首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The turbulent deflagration to detonation transition (DDT) process occurs when a subsonic flame interacts with intense turbulence resulting in spontaneous acceleration and the onset of DDT. The mechanisms that govern the spontaneous ignition are deduced intricately in numerical simulations. This work experimentally explores the conditions that are known precursors to detonation initiation. More specifically, the experiment presented investigates the role of flame-generated compression as a cycle that continuously amplifies until a hotspot forms on the flame front and ignites. The study quantifies the compression comparatively against other flame regimes through ultra-high speed pressure measurements while qualitatively detailing flame generated compression through density gradients via schlieren imaging. Additionally, flow field measurements are quantified throughout the flow using simultaneous particle image velocimetry (PIV) and OH* chemiluminescence. The turbulence fluctuations and flame speeds are extracted from these measurements to identify the reactant conditions where flame-generated compression begins. Collectively, these simultaneous high-speed measurements provide detailed insight into the flame and flow field characteristics where the runaway process occurs. This work ultimately documents direct flow field measurements to extract the contribution of flame-generated turbulence on the turbulent deflagration to detonation transition process.  相似文献   

2.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

3.
Flame propagation in capillary tubes with smooth circular cross-sections and diameters of 0.5, 1.0, and 2.0 mm are investigated using high-speed photography. Flames were found to propagate and accelerate to detonation speed in stoichiometric ethylene and oxygen mixtures initially at room temperature in all three tube diameters. Ignition occurs at the midpoint along the length of the tube. We observe for the first time transition to detonation in micro-tubes. Detonation was observed with both spark and hot-wire ignition. Tubes with larger diameters take longer to transition to detonation. In fact, transition distance scales with the diameter in our 1.0 and 2.0 mm cases with spark ignition. Flame structures are observed for various stages of the process. Three types of flame propagation modes were observed in the 0.5 mm tube with spark ignition: (a) acceleration to Chapman–Jouguet (CJ) detonation speed followed by constant CJ wave propagation, (b) acceleration to CJ speed, followed by the detonation wave failure, and (c) flame acceleration to a constant speed below the CJ speed of approximately 1600 m/s. The current detonation mechanism observed in capillary tubes is applicable to predetonators for pulsed detonation, micro propulsion devices, safety issues, and addresses fundamental issues raised by recent theoretical and numerical analyses.  相似文献   

4.
There are not many studies on DDT with no obstacles and the initiation of DDT near the end of a closed tube. Therefore in the present study we experimentally investigate the mechanism of the combustion wave transition to a detonation wave when there are no obstacles. In particular, we show that a local explosion near the tube wall is necessary for the initiation of a detonation. Parameters that we varied are the wall configuration, distance between the ignition point and the wall, and initial filling pressure. The combustion waves and the compression waves are visualized using the Schlieren optical system. From the results, we found it is necessary for the combustion wave to reach four walls so that the detonation could be initiated by the local explosion. In the conditions of the present experiment, we exhibited that the local explosion did not occur in the vicinity of a single wall and four orthogonal walls; instead, the local explosion occurred in a situation with five orthogonal walls. The time of the local explosion and the detonation initiation is 2.6 ± 1.1 and 2.0 ± 0.1 times the characteristic time for the combustion wave to propagate hemispherically from an ignitor and reach the four walls.  相似文献   

5.
考虑几何结构参数对激波聚焦触发爆轰波的复杂影响,对H2/Air预混气的环形射流激波聚焦起爆现象开展了数值模拟研究,详细分析了不同隔板深度条件下的激波聚焦过程、流场演化特征以及爆轰波参数变化规律。研究结果表明,凹腔内激波聚焦诱导的局部爆炸以及隔板前缘处射流形成"卷吸涡"是引起爆轰波触发的两个重要机制,而隔板深度是影响环形射流激波聚焦起爆性能的关键因素。随着隔板深度的增加,凹腔内激波聚焦的强度逐步增强,回传的能量损失有所减小,进而导致爆燃转爆轰的距离与时间显著缩短。此外,当隔板深度由1 mm逐渐增加至3 mm时,爆轰波自持传播稳定性呈现出先降低后升高的变化趋势,产生这一现象的主要原因是爆轰波强度与三波点运动的相互作用。  相似文献   

6.
The results of studying deflagration-to-detonation transition (DDT) in hydrogen-methane (propane)-air in a detonation tube with uniformly spaced annular obstacles are presented. The effect of the scaling factor on the DDT was identified. The boundary between fast deflagration and detonation regimes was calculated using a criterion based on a comparison of the gasdynamic and chemical characteristic times for the ignition of the mixture behind the shock wave reflected from an obstacle.  相似文献   

7.
Detonation combustors are considered promising alternatives to conventional combustors because they offer high thermal efficiency and fast combustion. However, especially for the rotating detonation combustor, the theoretical propulsive performance has not been confirmed in experimental studies because the highly unsteady flow field hinders the measurements process. To understand the involved phenomena in more detail, a reflective shuttling detonation combustor (RSDC) with a rectangular combustion chamber was developed. The interior of the chamber can easily be visualized owing to its two-dimensional quality. Utilizing the RSDC, several combustion tests with gaseous ethylene and oxygen were conducted for different values of mass flow rates and equivalence ratios. Combustion modes from the tests were classified into four types based on the fast Fourier transform (FFT) analysis of the luminous intensity of the CH* self-luminescence images captured by a high-speed camera and a band pass filter. Simultaneously, the theoretical total pressure of a conventional isobaric combustor was compared to the static pressure measured at the bottom of the RSDC chamber. For the detonation modes, the ratio between experimentally measured static pressure and the theoretical pressure varied depending on the location in the chamber owing to the distribution of the time-averaged static pressure. Furthermore, the pressure ratio of the detonation modes was up to 18% lower than that of the deflagration mode potentially owing to the flow velocity induced by the detonation waves.  相似文献   

8.
An experimental investigation of the onset of detonation   总被引:2,自引:0,他引:2  
An experimental configuration is devised in the present investigation whereby the condition at the final phase of the deflagration to detonation transition (DDT) process can be generated reproducibly by reflecting a CJ detonation from a perforated plate. The detonation products are transmitted downstream through the plate, generating a turbulent reaction front that mixes with the unburned mixture and that drives a precursor shock ahead of it at a strength of about M = 3. The gasdynamic condition that is generated downstream of the perforated plate closely corresponds to that just prior to the onset of detonation in the DDT process. The turbulence parameters can be controlled by varying the geometry of the perforated plate; thus, the condition leading to the onset of detonation can be experimentally investigated. A one-dimensional theoretical analysis of the steady wave processes was first performed, and the experimental results show good agreement, indicating that the present experimental condition can be theoretically described. Two different detonation tube geometries (one with a square cross-section of 300 mm by 300 mm and the other with a circular cross-section of 150 mm) are used to demonstrate the independence of the tube diameter at the critical condition for DDT. Perforated plates with different hole diameters (d = 8, 15, and 25 mm) were tested, and the hole spacing to hole diameter ratio was maintained at 0.5. Different hydrogen–air mixtures were tested at normal temperature and pressure. For the plate with 8 mm holes, the onset of detonation is never observed. For the plate with 15 mm holes, successful initiation of a detonation is achieved for 0.8 < < 1.75 in both detonation tubes. For the plate with 25 mm holes, detonation initiation is observed for 0.7 < < 2.1 in the square detonation tube and for 0.8 < < 1.6 in the smaller circular detonation tube.  相似文献   

9.
Paper reports a result of experiments of spherical shock waves generated by explosions of micro-explosives weighing from 1 to 10 mg ignited by the irradiation of Q-switched laser beam and direct initiation to a spherical detonation wave in stoichiometric oxygen/hydrogen mixtures at 10–200 kPa. We visualized the interaction of debris particles ejected micro-explosives’ surface with shock waves by using double exposure holographic interferometry and high-speed video recording. Upon explosion, minute inert debris launched supersonically from micro-charge surface precursory to shock waves initiated spherical detonation waves. To examine this effect we attached 0.5–2.0 μm diameter SiO2 particles densely on micro-explosive surfaces and observed that the supersonic particles, significantly promoted the direct initiation of spherical detonation waves. The domain and boundary of detonation wave initiations were experimentally obtained at various initial pressures and the amount of micro-charges.  相似文献   

10.
The development of advanced boosted internal combustion engines (ICEs) is constrained by super-knock which is closely associated with end gas autoignition and detonation development. The present study numerically investigates the transient autoignition and detonation development processes under engine-relevant conditions for primary reference fuel (PRF) consisting of n-heptane and isooctane. The effects of PRF composition are systematically examined. By considering the transient local sound speed rather than its initial value, a new non-dimensional parameter is proposed to assess the transient chemical-acoustic interaction and to quantify the autoignition modes. Two detonation sub-modes, normal and over-driven detonation, are identified and the corresponding mechanisms are interpreted. For the over-driven detonation, there exist two developing regimes with weak/strong chemical-acoustic coupling and slow/rapid pressure enhancement. It is found that the maximum pressure caused by autoignition decreases with the blending ratio of isooctane, mainly due to the increase in excitation time. Besides, the strongest detonation induced by hot spot usually occurs within the over-driven detonation sub-regime. Its condition can be well quantified by the new non-dimensional parameter proposed in work and its strength is determined by the ratio of hot spot acoustic time to excitation time. The deviation of transient autoignition front propagation from prediction based on homogenous ignition is mainly attributed to the non-uniform compression effect caused by gradually enhanced pressure wave, while the influence of heat conduction and mass diffusion is negligible. The initial expansion stage dominating the induction period of local autoignition is greatly influenced by the compression of pressure wave. Therefore, the continuously enhanced pressure wave non-uniformly changes the local ignition delay (i.e. reduces its spatial gradient) within the hot spot and thereby accelerates the autoignition front propagation. The relationship among the parameters quantifying the detonation propensity is assessed and interpreted. The present study provides helpful understanding of detonation development under engine conditions.  相似文献   

11.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对铝粉-空气两相流的燃烧转爆轰(DDT)过程及爆轰波结构进行了实验研究。对铝粉-空气混合物弱点火条件下DDT过程不同阶段的特征进行了分析,实验结果显示混合物经历了缓慢反应压缩阶段、压缩波加速冲击波形成阶段、冲击反应过渡阶段、冲击反应向过压爆轰过渡阶段和爆轰阶段,得到了混合物各阶段的DDT参数,由此进一步分析了DDT浓度的上、下限。在1.4 m爆轰测试段的4个截面的环向上各均匀安装8个传感器,对爆轰波结果进行测试,并对铝粉-空气混合物爆轰波的单头结构进行了分析。  相似文献   

12.
In this work we investigate the initiation of detonations in energetic materials through thermal power deposition due to pore collapse. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The deposition term is partially based on previous results of simulations of pore collapse at the microscale, modelled at the macroscale as hotspots. It is found that a critical size of the hotspots exists. If the hotspots exceed the critical size, direct initiation of detonation can be achieved even with a low power input, in contrast to the common assumption that a sufficient power is necessary to initiate detonation. We show that sufficient power is necessary only when the size of the hotspots is below the critical size. In this scenario, the so-called ‘explosion in the explosion’, the initial ignition does not lead to a detonation directly, but detonation occurs later as a result of shock-to-detonation transition in the region processed by the shock wave generated by the initial ignition.  相似文献   

13.
韩旭  周进  林志勇 《中国物理 B》2012,(12):305-309
<正>A new method to initiate and sustain the detonation in supersonic flow is investigated.The reaction activity of coming flow may influence the result of detonation initiation.When a hot jet initiates a detonation wave successfully, there may exist two types of detonations.If the detonation velocity is greater than the velocity of coming flow,there will be a normal detonation here.Because of the influence of boundary layer separation,the upstream detonation velocity is much greater than the Chapman-Jouguet(CJ) detonation velocity.On the other hand,if the detonation velocity is less than the velocity of coming flow,an oblique detonation wave(ODW) will form.The ODW needs a continuous hot jet to sustain itself.If the jet pressure is lower than a certain value,the ODW will decouple.In contrast,the normal detonation wave can sustain itself without the hot jet.  相似文献   

14.
 采用盖帽探针、离子探针实验研究了点火药点燃时,DDT管材料变化(钢和铝)对颗粒状RDX床的燃烧转爆轰的影响。  相似文献   

15.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对环氧丙烷-空气两相流云雾及环氧丙烷-铝粉-空气三相流云雾的爆燃转爆轰(DDT)过程进行了实验研究。对弱点火条件下多相混和物DDT过程的不同阶段特征进行了分析,对比研究了不同浓度时混和物的燃爆情况。结果表明:浓度为513 g/m3的环氧丙烷-空气混和物及浓度为237和643 g/m3的环氧丙烷-铝粉-空气混和物均能在管道中完成爆燃向爆轰的转变,进入自持爆轰阶段,其胞格尺寸分别为0.28和0.50 m。  相似文献   

16.
The initiation and propagation of detonation waves in combustible high speed flows were studied experimentally. A planar detonation wave traveling in an initiation tube was transmitted into a test section where a combustible high speed flow was induced by an incident shock wave generated in a shock tube. In this study, the flow Mach numbers were obtained as 0.9 and 1.2. The experimental results show that depending on the flow velocity, the apparent propagation velocity of a detonation wave is higher in the upstream and lower in the downstream direction than the CJ velocity. Smoked plate records reveal cellular patterns deformed in the flow direction, and the calculated aspect ratios of the cell were found to agree well with the experimental ones on the basis of the assumption that the velocity of the transverse wave is not affected by the flowing mixture. By analyzing the shock-wave diffraction at the position where there is an abrupt change in the area, on the basis of Whitham’s theory, it was deduced that in the present experimental set-up, the detonation was initiated by the reflection of the diffracted shock waves on the sidewalls of the test section. The agreement between the experimental and calculated results regarding the position of the cellular patterns on the smoked plate record indicated that the position of detonation initiation in high speed flows is shifted downstream due to the flow velocity.  相似文献   

17.
瞬态光谱法确定环氧丙烷DDT过程中起主导作用的基团   总被引:1,自引:1,他引:0  
解决了燃料爆燃转爆轰(DDT)过程初始阶段弱辐射瞬态光谱测试问题、反应中间产物辐射相对强度定标问题和瞬态光谱测试系统同步控制问题后,从爆炸激波管的6个不同侧窗,拍摄了环氧丙烷DDT过程不同距离处的曝光时间为2~8 μs、分辨率达到0.2 nm的瞬态发射光谱。对所测光谱进行相对强度定标后,得到了主要反应中间产物光辐射强度随燃烧波阵面传播距离的变化曲线, 此曲线反映出DDT过程中反应中间产物的发展过程和其相应的浓度变化。结果显示,在爆燃阶段,燃烧气体的化学反应速率平缓增加,反应中间产物浓度逐渐增大;但在爆燃转爆轰的瞬间,反应急剧增快,反应中间产物的浓度突跃式地成倍增大。其中CO分子和CHO,OH自由基的浓度增幅显著大于其他反应产物,表明这几个基团是环氧丙烷爆燃转爆轰过程中起主导作用的重要基团。  相似文献   

18.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

19.
Numerical simulation based on the Euler equation and one-step reaction model is carried out to investigate the process of deflagration to detonation transition (DDT) occurring in a straight duct. The numerical method used includes a high resolution fifth-order weighted essentially non-oscillatory (WENO) scheme for spatial discretization, coupled with a third order total variation diminishing Runge-Kutta time stepping method. In particular, effect of energy release on the DDT process is studied. The model parameters used are the heat release at $q=50, 30, 25, 20, 15, 10$ and $5$, the specific heat ratio at $1.2$, and the activation temperature at $Ti=15$, respectively. For all the cases, the initial energy in the spark is about the same compared to the detonation energy at the Chapman-Jouguet (CJ) state. It is found from the simulation that the DDT occurrence strongly depends on the magnitude of the energy release. The run-up distance of DDT occurrence decreases with the increase of the energy release for $q$=50~20, and increases with the increase of the energy release for $q$=20~5. This phenomenon is found to be in agreement with the analysis of mathematical stability theory. It is suggested that the factors to strengthen the DDT would make the detonation more stable, and vice versa. Finally, it is concluded from the simulations that the interaction of the shock wave and the flame front is the main reason for leading to DDT.  相似文献   

20.
 针对气相爆轰波成长机制研究,采用压力传感器和高速摄影技术,测试了氢氧混合气体在点火后的火焰波、前驱冲击波以及爆轰波的成长变化过程,计算了冲击波过程参数和气体状态参数,分析了火焰加速机制。实验结果表明,APX-RS型高速摄影系统可用于拍摄气相爆轰波的成长历程;氢氧爆轰波的产生是由于湍流火焰和冲击波的相互正反馈作用,导致反应区内多处发生局部爆炸,爆炸波与冲击波相互耦合,最终成长为定常爆轰波。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号