首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of three butylbenzene isomers (n-butylbenzene, iso-butylbenzene and tert-butylbenzene)/air mixtures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at the initial temperature of 423 K, initial pressures of 1–10 atm, and equivalence ratios (?) of 0.7–1.5. The laminar burning velocities of butylbenzene/O2/He mixtures were also measured at 423 K, 10 atm and ? = 1.5 to provide additional experimental data under conditions that the butylbenzene/air experiments are susceptible of cellular instability. Comparison among the laminar burning velocities of butylbenzenes including both the three isomers investigated in this work and sec-butylbenzene investigated in our recent work [Combust. Flame 211 (2020) 18–31] shows remarkable fuel isomeric effects, that is, iso-butylbenzene has the slowest laminar burning velocities, followed by n-butylbenzene and tert-butylbenzene, while sec-butylbenzene has the fastest laminar burning velocities. A kinetic model for butylbenzene combustion was developed to simulate the laminar flame propagation of butylbenzenes. Sensitivity analysis was performed to reveal important reactions in laminar flame propagation of butylbenzenes, including both small species reactions and fuel-specific reactions. Kinetic effects are concluded to result in the different laminar burning velocities of four butylbenzene isomers. Small species reactions control the laminar flame propagation under lean conditions, which results in small differences of laminar burning velocities. Chain termination reactions, especially fuel-specific reactions, have important contributions to inhibit the laminar flame propagation under rich conditions. The structural features of butylbenzene isomers can significantly affect the formation of some crucial radicals such as methyl, cyclopentadienyl and benzyl radicals under rich conditions, which leads to remarkable fuel isomeric effects on their laminar burning velocities, especially at high pressures.  相似文献   

2.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of acetone and 2-butanone at normal to high pressures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5. A kinetic model of acetone and 2-butanone combustion was developed from our recent pentanone model [Li et al., Proc. Combust. Inst. 38 (2021) 2135–2142] and validated against experimental data in this work and in literature. Together with our recently reported data of 3-pentanone, remarkable fuel molecular structure effects were observed in the laminar flame propagation of the three C3C5 ketones. The laminar burning velocity increases in the order of acetone, 2-butanone and 3-pentanone, while the pressure effects in laminar burning velocity reduces in the same order. Modeling analysis was performed to provide insight into the key pathways in flames of acetone and 2-butanone. The differences in radical pools are concluded to be responsible for the observed fuel molecular structure effects on laminar burning velocity. The favored formation of methyl in acetone flames inhibits its reactivity and leads to the slowest laminar flame propagation, while the easiest formation of ethyl in 3-pentanone flames results in the highest reactivity and fastest laminar flame propagation. Furthermore, the LBVs of acetone and 3-pentanone exhibit the strongest and weakest pressure effects respectively, which can be attributed to the influence of fuel molecular structures through two crucial pressure-dependent reactions CH3 + H (+M) = CH4 (+M) and C2H4 + H (+M) = C2H5 (+M).  相似文献   

3.
Many studies have examined the stoichiometric lengths of laminar gas jet diffusion flames. However, these have emphasized normal flames of undiluted fuel burning in air. Many questions remain about the effects of fuel dilution, oxygen-enhanced combustion, and inverse flames. Thus, the stoichiometric lengths of 287 normal and inverse gas jet flames are measured for a broad range of nitrogen dilution. The fuels are methane and propane and the ambient pressure is atmospheric. Nitrogen addition to the fuel and/or oxidizer is found to increase the stoichiometric lengths of both normal and inverse diffusion flames, but this effect is small at high reactant mole fraction. This counters previous assertions that inert addition to the fuel stream has a negligible effect on the lengths of normal diffusion flames. The analytical model of Roper is extended to these conditions by specifying the characteristic diffusivity to be the mean diffusivity of the fuel and oxidizer into stoichiometric products and a characteristic temperature that scales with the adiabatic flame temperature and the ambient temperature. The extended model correlates the measured lengths of normal and inverse flames with coefficients of determination of 0.87 for methane and 0.97 for propane.  相似文献   

4.
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.  相似文献   

5.
6.
Phosphorus-containing compounds are the promising halon alternatives for flame inhibitions. However, some literatures suggested that the phosphorus-related inhibitors may behave as the unfavorable ones that will increase the burning velocity under lean-burn conditions, and this indeed posed potential threats to the fire prevention and fighting. To seek deeper insights into the reaction process, a numerical investigation was actualized to study the phosphorus-related effects on methane-air flames. By replacing a phosphorus-related inhibitor with the corresponding decomposed molecules, the detailed promoting and inhibiting effects of combustion were separated from the general chemical effect. A comparative study was carried out to identify the interaction between the two effects under different combustion conditions. It is observed that the promoting effect becomes the dominant factor during the reaction process when the equivalence ratio is smaller than 0.60. In this lean-burn condition, the exothermic reactions were faster than the others within the reaction chains due to the reduction of radical recombination in hydrocarbon oxidation. The results are believed to be useful for the further application and improvement of flame inhibitors.  相似文献   

7.
Heat recirculation effects on flame propagation and flame structure are theoretically and experimentally examined in a mesoscale tube as the simplest model of heat-recirculating burners. Solutions for steady propagation are obtained using a one-dimensional two-temperature approximation. The results show that the low heat diffusivities of common solid materials permit significant heat recirculation through the wall only for a slowly-propagating condition, otherwise the flame behaves almost like a freely-propagating nonadiabatic flame. This limited heat recirculation sharply pinches and stretches two well-known branches of the freely-propagating nonadiabatic flame, resulting in the appearance of two slow-propagation branches. On the upper slow-propagation branch flames can reach superadiabatic temperatures and on the lower one, which is stretched from the classical unstable lower branch, flames can be stable. As the tube inner diameter decreases, another burning regime appears where flames are barely sustained by the heat recirculation. Further reduction of the tube inner diameter makes no flame exist. It is also revealed that a flame in a mesoscale tube has two length scales, i.e. the conventional flame thickness and a convective preheat zone thickness, and that the latter should be much larger than the former for significant heat recirculation. It is theoretically predicted that a heat-recirculating, even superadiabatic, flame with positive propagation velocity against the gas flow can exist in a mesoscale tube. It is also found that a flame transition from one branch to another in a given tube is well described by only one dimensionless parameter. Finally, these theoretical results show good qualitative agreements with experiments, especially for the transition behaviours.  相似文献   

8.
To reveal insights into the combustion mechanism of multiple alkyl substituent cycloparaffins, this work reports an experimental and modeling study of 1,3,5-trimethylcyclohexane (T135MCH) pyrolysis in an extended flow reactor at low and atmospheric pressures. More than 30 species were detected and quantified employing synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry, and a detailed kinetic model developed based on reaction classes and update kinetic data was validated against the measured species profiles with a reasonable agreement. The reaction flux analyses were performed to reveal the key pathways of the fuel decomposition, intermediates production and aromatics formation. For the primary decomposition, the branching ratios of reaction types show strong dependence on changes of pressures and temperatures, including unimolecular methyl elimination, unimolecular ring-opening isomerization and H-abstraction. Besides the direct dissociation channels, major intermediate hydrocarbons are formed via stepwise dehydrogenation, recombination with ĊH3 radical or “formally direct” chemically activated reactions triggered by Ḣ atom addition. Monocyclic aromatic hydrocarbons such as benzene and toluene can be produced by traditional H-abstraction/β-C-H scission sequence, cyclopentadiene-related pathways, or recombination mechanism from small linear products. The formations of indene and naphthalene are controlled by C5+C5 and C5+C4 mechanism respectively. The comparison work of species profiles combined with theoretical calculations of bond dissociation enthalpies (BDEs) was performed to reveal the multiple CH3-group substituent and isomeric effects of methylcyclohexane (MCH), 1,2,4-trimethylcyclohexane (T124MCH) and T135MCH on pyrolysis activity and ethylene/benzene formation. Besides the increased reaction active sites, the added CH3-group and ortho-substitution can both weaken the strength of CC and CH bonds, leading to the promoting decomposition activity. The different formation tendencies of products are caused by different BDEs, length of carbon skeleton, as well as complex fuel-specific pathways.  相似文献   

9.
Combustion experiments on fuel droplet–vapor–air mixtures have been performed with a rapid expansion apparatus which generates monodispersed droplet clouds with narrow diameter distribution using the condensation method. The effects of fine fuel droplets on flame propagation were investigated for ethanol droplet–vapor–air mixtures at various pressures from 0.2 to 1.0 MPa. A stagnant fuel droplet–vapor–air mixture, generated in a rapid expansion chamber, was ignited at the center of the chamber using an ignition wire. Spherical flame propagation under constant-pressure conditions was observed with a high-speed video camera and flame speed was measured. Total equivalence ratio, and the ratio of liquid fuel mass to total fuel mass, was varied from 0.6 to 1.4 and from zero to 56%, respectively. The mean droplet diameter of fuel droplet–vapor–air mixtures was set at 8.5 and 11 μm. It was found that the flame speed of droplet–vapor–air mixtures less than 0.9 in the total equivalence ratio exceeds that of premixed gases of the same total equivalence ratio at all pressures. The flame speed of fuel droplet–vapor–air mixtures decreases as the pressure increases in all total equivalence ratios. At large ratios of liquid fuel mass to total fuel mass, the normalized flame speed (the flame speed of droplet–vapor–air mixtures divided by the flame speed of the premixed gas with the same total equivalence ratio), increases with the increase in pressure for fuel-lean mixtures, and it decreases for fuel-rich mixtures. The outcome is reversed at small ratios of liquid fuel mass to total fuel mass; the normalized flame speed decreases with the increase in pressure for fuel-lean mixtures, and increases for fuel-rich mixtures. The results suggest that the increase in pressure promotes droplet evaporation in the preheat zone.  相似文献   

10.
11.
The laminar burning rate, the explosion peak pressure, and the pressure rise coefficient have been measured for the first time for silane-nitrous oxide-argon mixtures using the spherically expanding flame technique in a constant volume combustion chamber. For these three parameters, the values obtained were higher than for hydrogen-nitrous oxide-argon and typical hydrocarbon-based mixtures. A maximum burning rate of 1800 g/m2 s was measured at 101 kPa, whereas under similar conditions, a maximum burning rate around 950 g/m2 s has been reported for hydrogen-nitrous oxide-argon mixtures. To better understand the chemical dynamics of flames propagating in SiH4–N2O–Ar mixtures, a detailed reaction model from the literature was improved using collision limit violation analysis and updated thermodynamic properties calculated with a high-level ab initio approach. The reaction model predicts the burning rate within 14% on average but demonstrates error close to 50% for the richest mixtures. The chemistry of the H–O–N system is important under all the conditions presently studied. The chemistry of the Si–H–O–N system demonstrates an increasing importance under rich conditions. In particular, the reactions (i) forming SiOx(s); (ii) describing the interaction of Si-species with N2O; and (iii) involving silicon hydrides, have an important role for the heat release dynamics. The condensed combustion products formed in the silane-nitrous oxide-argon flames were sampled and characterized using electron micrograph, electronic diffraction, energy-dispersive spectroscopy, and X-ray powder diffraction. For all equivalence ratios, silica spherical particles with a mean diameter in the range 200–300 nm were observed. In addition, for mixtures with Φ ≥ 2.2, silicon nanowires were formed. X-ray diffraction experiments showed that the silicon nanowires are composed of metal silicon characterized by a cubic structure (lattice parameter: a=5.425Å) with the Fm-3m space group.  相似文献   

12.
A partially prevaporized spray burner was developed to investigate the interaction between fuel droplets and a flame. Monodispersed partially prevaporized ethanol sprays with narrow diameter distribution were generated by the condensation method using rapid pressure reduction of a saturated ethanol vapor–air mixture. A tilted flat flame was stabilized at the nozzle exit using a hot wire. Particle tracking velocimetry (PTV) was applied to measurements of the droplet velocity; the laminar burning velocity was obtained from gas velocity derived from the droplet velocity. Observations were made of flames in partially prevaporized spray streams with mean droplet diameters of 7 μm and the liquid equivalence ratios of 0.2; the total equivalence ratio was varied. In all cases, a sharp vaporization plane was observed in front of the blue flame. Flame oscillation was observed on the fuel-rich side. At strain rates under 50 s−1, the change in the burning velocity with the strain rate is small in fuel-lean spray streams. In spray streams of 0.7 and 0.8 in the total equivalence ratio, burning velocity increases with strain rates of greater than 50 s−1. However, in spray streams with 0.9 and 1.0 in the total equivalence ratio, burning velocity decreases as the strain rate increases. At strain rates greater than 80 s−1, burning velocity decreases with an increased gas equivalence ratio. The effect of mean droplet diameter, and the entry length of droplets into a flame on the laminar burning velocity, were also investigated to interpret the effect of the strain rate on the laminar burning velocity of partially prevaporized sprays.  相似文献   

13.
This work analyses the classical Emmons (1956) solution of flat plate laminar flame combustion on a film of liquid fuel. A two-dimensional (2D) numerical model developed for this purpose has been benchmarked with experimental results available in the literature for methanol. In the parametric study, numerical predictions have been compared with Emmons classical solution. The study shows that the Emmons solution is valid in a range of Reynolds numbers where flame anchors near the leading edge of the methanol pool and the combustion zone is confined around the hydrodynamic and thermal boundary layers. However, in cases of low free stream velocities the combustion zone is beyond the boundary layer zone and the Emmons solution deviates. In cases of very high free stream velocities, the flame moves away from the leading edge and anchors at a location downstream. The Emmons solution is not applicable in this case as well. For the fuel considered in this study (methanol), accounting for thermal radiation, employing an optically thin radiation model, allows better agreement between experimental and numerical temperature profiles but does not affect the mass burning rates.  相似文献   

14.
Usually premixed flame propagation and laminar burning velocity are studied for mixtures at normal or elevated temperatures and pressures, under which the ignition delay time of the premixture is much larger than the flame resistance time. However, in spark-ignition engines and spark-assisted compression ignition engines, the end-gas in the front of premixed flame is at the state that autoignition might happen before the mixture is consumed by the premixed flame. In this study, laminar premixed flames propagating into an autoigniting dimethyl ether/air mixture are simulated considering detailed chemistry and transport. The emphasis is on the laminar burning velocity of autoigniting mixtures under engine-relevant conditions. Two types of premixed flames are considered: one is the premixed planar flame propagating into an autoigniting DME/air without confinement; and the other is premixed spherical flame propagating inside a closed chamber, for which four stages are identified. Due to the confinement, the unburned mixture is compressed to high temperature and pressure close to or under engine-relevant conditions. The laminar burning velocity is determined from the constant-volume propagating spherical flame method as well as PREMIX. The laminar burning velocities of autoigniting DME/air mixture at different temperatures, pressures, and autoignition progresses are obtained. It is shown that the first-stage and second-stage autoignition can significantly accelerate the flame propagation and thereby greatly increase the laminar burning velocity. When the first-stage autoignition occurs in the unburned mixture, the isentropic compression assumption does not hold and thereby the traditional method cannot be used to calculate the laminar burning velocity. A modified method without using the isentropic compression assumption is proposed. It is shown to work well for autoigniting mixtures. Besides, a power law correlation is obtained based on all the laminar burning velocity data. It works well for mixtures before autoignition while improvement is still needed for mixtures after autoignition.  相似文献   

15.
In this paper the propagation of combustion waves in solid composite energetic material consisting of fuel and highly thermal conductive inert elements is investigated using a one-dimensional model with a single step reaction mechanism. The analysis is focused on the study of the effect of the geometrical configuration of the composite material on flame speed and dynamics. Spatial averaging over directions transverse to the propagation direction is performed in such a way as to retain the multidimensional nature of the problem. It is shown that the regimes of combustion depend on the geometry of the composite. The largest possible flame speed enhancement is attained in cases when the heat fluxes along the structural elements are not disrupted. For each configuration selected, there exists an optimal choice of the geometric parameters that maximizes the flame velocity.  相似文献   

16.

Ignition and flame propagation for pyrolysing fuel in a cylindrical enclosure has been examined in this study. The pyrolysing fuel of cylindrical shape was located both eccentrically and concentrically inside an outer cylinder that was sustained at high temperature. Due to gravity, buoyancy motion was inevitably incurred in the enclosure, and this was found to affect the flame initiation and propagation behaviour. Radiative heat transfer also played an important role in the thermo-fluid mechanical behaviour because of the high temperature involved in the problem. Numerical studies have been performed for various parameters such as the Grashof number, overheat ratio, gas absorption coefficient and vertical fuel eccentricity. The flame behaviour and initiation were observed to be totally different depending on the Grashof number. Due to absorbed radiant energy, the radiative gas played a significant role in flame evolution. The location of flame onset was also affected by both the vertical eccentricity of the inner pyrolysing fuel and the thermal conditions applied. The heating process and the flow field development were found to govern flame initiation and propagation.  相似文献   

17.
18.
Intricacies associated with the estimation of laminar flame speed using the axisymmetric Bunsen flame technique were assessed, through parametric direct numerical simulations. The study involved methane-air mixtures at atmospheric pressure and temperature, and both the flame cone angle and flame surface area methods were utilized to estimate the laminar flame speeds based on conditions used in recent relevant experimental studies. The results provided insight into the details of the flame structure and allowed for the assessment of various non-idealities and the attendant uncertainties associated with the estimation of laminar flame speeds. Additionally, molecular transport effects were investigated by altering the fuel diffusivity, in order to evaluate its impact on the flame structure and propagation under the presence of negative stretch. The modification of fuel diffusivity was found to affect the burning rate as stretch varies. Under fuel rich conditions, decreasing the fuel diffusivity was found to have an opposite effect on the heat release and thus the burning rate, when compared to positively stretched flames that have been investigated recently in a similar manner. The reported results are expected to provide guidance in flame propagation experiments using the convenient Bunsen flame method at near-atmospheric or elevated pressures, as well as insight into the effects of negative stretch that has, compared to positive, attracted less attention in past studies.  相似文献   

19.
Laminar flame propagation of branched hexene isomers/air mixtures including 3,3-dimethyl-1-butene (NEC6D3), 2,3-dimethyl-1-butene (XC6D1) and 2,3-dimethyl-2-butene (XC6D2) was investigated using a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 373 K and equivalence ratios of 0.7–1.5. The measured laminar burning velocity (LBV) decreases in the order of NEC6D3, XC6D1 and XC6D2, which indicates distinct fuel molecular structure effects. A kinetic model was constructed and examined using the new experimental data. Modeling analyses were performed to reveal fuel-specific flame chemistry of branched hexene isomers. In the NEC6D3 and XC6D1 flames, the allylic CC bond dissociation reaction plays the most crucial role in fuel decomposition under rich conditions, while its dominance is replaced by H-abstraction reactions under lean conditions. The H-abstraction and H-assisted isomerization reactions are concluded to govern fuel consumption in the XC6D2 flame under all investigated conditions. Both C0C3 reactions and fuel-specific reactions are found to be influential to the laminar flame propagation of the three branched hexene isomers. Fuel molecular structure effects were analyzed with special attentions on key intermediates distributions and fuel-specific reactions in all flames. Due to the formation selectivity of key intermediates such as 2-methyl-1,3-butadiene and 2,3-dimethyl-1,3-butadiene, the production of reactive radicals especially H follows the order of NEC6D3 > XC6D1 > XC6D2, which results in the same order of fuel reactivities and LBVs.  相似文献   

20.
The stoichiometry and the flame structure of the leading edge, an anchor point, of a non-premixed methane flame were investigated. Local equivalence ratio at an anchor point was measured using local chemiluminescence spectra with a high spatial resolution of 17 × 450 μm. Spatially and spectrally resolved chemiluminescence measurements were carried out along the centerline and radius of the non-premixed laminar flame. The chemiluminescence spectra measured at the flame tip contained very strong luminous spectra, while these continuous background spectra disappeared at the blue flame tip region. The chemiluminescence spectra below the blue flame region were very similar to those measured in laminar premixed methane/air flames. Based on these results, the local equivalence ratio near the anchor point was calculated. Therefore, we measure the anchor point location, its shape, and stoichiometry using the flame spectra. At the anchor point, there was an island of lower equivalence ratio of 0.65, which can be estimated as the lower flammable limit of premixed laminar flame. The size of the anchor point was of horizontal elliptical shape less than 0.6 and 0.4 mm in vertical length, which located at 1.2 mm above the burner rim and inside of the rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号