首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of three butylbenzene isomers (n-butylbenzene, iso-butylbenzene and tert-butylbenzene)/air mixtures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at the initial temperature of 423 K, initial pressures of 1–10 atm, and equivalence ratios (?) of 0.7–1.5. The laminar burning velocities of butylbenzene/O2/He mixtures were also measured at 423 K, 10 atm and ? = 1.5 to provide additional experimental data under conditions that the butylbenzene/air experiments are susceptible of cellular instability. Comparison among the laminar burning velocities of butylbenzenes including both the three isomers investigated in this work and sec-butylbenzene investigated in our recent work [Combust. Flame 211 (2020) 18–31] shows remarkable fuel isomeric effects, that is, iso-butylbenzene has the slowest laminar burning velocities, followed by n-butylbenzene and tert-butylbenzene, while sec-butylbenzene has the fastest laminar burning velocities. A kinetic model for butylbenzene combustion was developed to simulate the laminar flame propagation of butylbenzenes. Sensitivity analysis was performed to reveal important reactions in laminar flame propagation of butylbenzenes, including both small species reactions and fuel-specific reactions. Kinetic effects are concluded to result in the different laminar burning velocities of four butylbenzene isomers. Small species reactions control the laminar flame propagation under lean conditions, which results in small differences of laminar burning velocities. Chain termination reactions, especially fuel-specific reactions, have important contributions to inhibit the laminar flame propagation under rich conditions. The structural features of butylbenzene isomers can significantly affect the formation of some crucial radicals such as methyl, cyclopentadienyl and benzyl radicals under rich conditions, which leads to remarkable fuel isomeric effects on their laminar burning velocities, especially at high pressures.  相似文献   

2.
3.
Phosphorus-containing compounds are the promising halon alternatives for flame inhibitions. However, some literatures suggested that the phosphorus-related inhibitors may behave as the unfavorable ones that will increase the burning velocity under lean-burn conditions, and this indeed posed potential threats to the fire prevention and fighting. To seek deeper insights into the reaction process, a numerical investigation was actualized to study the phosphorus-related effects on methane-air flames. By replacing a phosphorus-related inhibitor with the corresponding decomposed molecules, the detailed promoting and inhibiting effects of combustion were separated from the general chemical effect. A comparative study was carried out to identify the interaction between the two effects under different combustion conditions. It is observed that the promoting effect becomes the dominant factor during the reaction process when the equivalence ratio is smaller than 0.60. In this lean-burn condition, the exothermic reactions were faster than the others within the reaction chains due to the reduction of radical recombination in hydrocarbon oxidation. The results are believed to be useful for the further application and improvement of flame inhibitors.  相似文献   

4.
Combustion experiments on fuel droplet–vapor–air mixtures have been performed with a rapid expansion apparatus which generates monodispersed droplet clouds with narrow diameter distribution using the condensation method. The effects of fine fuel droplets on flame propagation were investigated for ethanol droplet–vapor–air mixtures at various pressures from 0.2 to 1.0 MPa. A stagnant fuel droplet–vapor–air mixture, generated in a rapid expansion chamber, was ignited at the center of the chamber using an ignition wire. Spherical flame propagation under constant-pressure conditions was observed with a high-speed video camera and flame speed was measured. Total equivalence ratio, and the ratio of liquid fuel mass to total fuel mass, was varied from 0.6 to 1.4 and from zero to 56%, respectively. The mean droplet diameter of fuel droplet–vapor–air mixtures was set at 8.5 and 11 μm. It was found that the flame speed of droplet–vapor–air mixtures less than 0.9 in the total equivalence ratio exceeds that of premixed gases of the same total equivalence ratio at all pressures. The flame speed of fuel droplet–vapor–air mixtures decreases as the pressure increases in all total equivalence ratios. At large ratios of liquid fuel mass to total fuel mass, the normalized flame speed (the flame speed of droplet–vapor–air mixtures divided by the flame speed of the premixed gas with the same total equivalence ratio), increases with the increase in pressure for fuel-lean mixtures, and it decreases for fuel-rich mixtures. The outcome is reversed at small ratios of liquid fuel mass to total fuel mass; the normalized flame speed decreases with the increase in pressure for fuel-lean mixtures, and increases for fuel-rich mixtures. The results suggest that the increase in pressure promotes droplet evaporation in the preheat zone.  相似文献   

5.
Heat recirculation effects on flame propagation and flame structure are theoretically and experimentally examined in a mesoscale tube as the simplest model of heat-recirculating burners. Solutions for steady propagation are obtained using a one-dimensional two-temperature approximation. The results show that the low heat diffusivities of common solid materials permit significant heat recirculation through the wall only for a slowly-propagating condition, otherwise the flame behaves almost like a freely-propagating nonadiabatic flame. This limited heat recirculation sharply pinches and stretches two well-known branches of the freely-propagating nonadiabatic flame, resulting in the appearance of two slow-propagation branches. On the upper slow-propagation branch flames can reach superadiabatic temperatures and on the lower one, which is stretched from the classical unstable lower branch, flames can be stable. As the tube inner diameter decreases, another burning regime appears where flames are barely sustained by the heat recirculation. Further reduction of the tube inner diameter makes no flame exist. It is also revealed that a flame in a mesoscale tube has two length scales, i.e. the conventional flame thickness and a convective preheat zone thickness, and that the latter should be much larger than the former for significant heat recirculation. It is theoretically predicted that a heat-recirculating, even superadiabatic, flame with positive propagation velocity against the gas flow can exist in a mesoscale tube. It is also found that a flame transition from one branch to another in a given tube is well described by only one dimensionless parameter. Finally, these theoretical results show good qualitative agreements with experiments, especially for the transition behaviours.  相似文献   

6.
The laminar burning rate, the explosion peak pressure, and the pressure rise coefficient have been measured for the first time for silane-nitrous oxide-argon mixtures using the spherically expanding flame technique in a constant volume combustion chamber. For these three parameters, the values obtained were higher than for hydrogen-nitrous oxide-argon and typical hydrocarbon-based mixtures. A maximum burning rate of 1800 g/m2 s was measured at 101 kPa, whereas under similar conditions, a maximum burning rate around 950 g/m2 s has been reported for hydrogen-nitrous oxide-argon mixtures. To better understand the chemical dynamics of flames propagating in SiH4–N2O–Ar mixtures, a detailed reaction model from the literature was improved using collision limit violation analysis and updated thermodynamic properties calculated with a high-level ab initio approach. The reaction model predicts the burning rate within 14% on average but demonstrates error close to 50% for the richest mixtures. The chemistry of the H–O–N system is important under all the conditions presently studied. The chemistry of the Si–H–O–N system demonstrates an increasing importance under rich conditions. In particular, the reactions (i) forming SiOx(s); (ii) describing the interaction of Si-species with N2O; and (iii) involving silicon hydrides, have an important role for the heat release dynamics. The condensed combustion products formed in the silane-nitrous oxide-argon flames were sampled and characterized using electron micrograph, electronic diffraction, energy-dispersive spectroscopy, and X-ray powder diffraction. For all equivalence ratios, silica spherical particles with a mean diameter in the range 200–300 nm were observed. In addition, for mixtures with Φ ≥ 2.2, silicon nanowires were formed. X-ray diffraction experiments showed that the silicon nanowires are composed of metal silicon characterized by a cubic structure (lattice parameter: a=5.425Å) with the Fm-3m space group.  相似文献   

7.
A partially prevaporized spray burner was developed to investigate the interaction between fuel droplets and a flame. Monodispersed partially prevaporized ethanol sprays with narrow diameter distribution were generated by the condensation method using rapid pressure reduction of a saturated ethanol vapor–air mixture. A tilted flat flame was stabilized at the nozzle exit using a hot wire. Particle tracking velocimetry (PTV) was applied to measurements of the droplet velocity; the laminar burning velocity was obtained from gas velocity derived from the droplet velocity. Observations were made of flames in partially prevaporized spray streams with mean droplet diameters of 7 μm and the liquid equivalence ratios of 0.2; the total equivalence ratio was varied. In all cases, a sharp vaporization plane was observed in front of the blue flame. Flame oscillation was observed on the fuel-rich side. At strain rates under 50 s−1, the change in the burning velocity with the strain rate is small in fuel-lean spray streams. In spray streams of 0.7 and 0.8 in the total equivalence ratio, burning velocity increases with strain rates of greater than 50 s−1. However, in spray streams with 0.9 and 1.0 in the total equivalence ratio, burning velocity decreases as the strain rate increases. At strain rates greater than 80 s−1, burning velocity decreases with an increased gas equivalence ratio. The effect of mean droplet diameter, and the entry length of droplets into a flame on the laminar burning velocity, were also investigated to interpret the effect of the strain rate on the laminar burning velocity of partially prevaporized sprays.  相似文献   

8.
This work analyses the classical Emmons (1956) solution of flat plate laminar flame combustion on a film of liquid fuel. A two-dimensional (2D) numerical model developed for this purpose has been benchmarked with experimental results available in the literature for methanol. In the parametric study, numerical predictions have been compared with Emmons classical solution. The study shows that the Emmons solution is valid in a range of Reynolds numbers where flame anchors near the leading edge of the methanol pool and the combustion zone is confined around the hydrodynamic and thermal boundary layers. However, in cases of low free stream velocities the combustion zone is beyond the boundary layer zone and the Emmons solution deviates. In cases of very high free stream velocities, the flame moves away from the leading edge and anchors at a location downstream. The Emmons solution is not applicable in this case as well. For the fuel considered in this study (methanol), accounting for thermal radiation, employing an optically thin radiation model, allows better agreement between experimental and numerical temperature profiles but does not affect the mass burning rates.  相似文献   

9.
Usually premixed flame propagation and laminar burning velocity are studied for mixtures at normal or elevated temperatures and pressures, under which the ignition delay time of the premixture is much larger than the flame resistance time. However, in spark-ignition engines and spark-assisted compression ignition engines, the end-gas in the front of premixed flame is at the state that autoignition might happen before the mixture is consumed by the premixed flame. In this study, laminar premixed flames propagating into an autoigniting dimethyl ether/air mixture are simulated considering detailed chemistry and transport. The emphasis is on the laminar burning velocity of autoigniting mixtures under engine-relevant conditions. Two types of premixed flames are considered: one is the premixed planar flame propagating into an autoigniting DME/air without confinement; and the other is premixed spherical flame propagating inside a closed chamber, for which four stages are identified. Due to the confinement, the unburned mixture is compressed to high temperature and pressure close to or under engine-relevant conditions. The laminar burning velocity is determined from the constant-volume propagating spherical flame method as well as PREMIX. The laminar burning velocities of autoigniting DME/air mixture at different temperatures, pressures, and autoignition progresses are obtained. It is shown that the first-stage and second-stage autoignition can significantly accelerate the flame propagation and thereby greatly increase the laminar burning velocity. When the first-stage autoignition occurs in the unburned mixture, the isentropic compression assumption does not hold and thereby the traditional method cannot be used to calculate the laminar burning velocity. A modified method without using the isentropic compression assumption is proposed. It is shown to work well for autoigniting mixtures. Besides, a power law correlation is obtained based on all the laminar burning velocity data. It works well for mixtures before autoignition while improvement is still needed for mixtures after autoignition.  相似文献   

10.
In this paper the propagation of combustion waves in solid composite energetic material consisting of fuel and highly thermal conductive inert elements is investigated using a one-dimensional model with a single step reaction mechanism. The analysis is focused on the study of the effect of the geometrical configuration of the composite material on flame speed and dynamics. Spatial averaging over directions transverse to the propagation direction is performed in such a way as to retain the multidimensional nature of the problem. It is shown that the regimes of combustion depend on the geometry of the composite. The largest possible flame speed enhancement is attained in cases when the heat fluxes along the structural elements are not disrupted. For each configuration selected, there exists an optimal choice of the geometric parameters that maximizes the flame velocity.  相似文献   

11.

Ignition and flame propagation for pyrolysing fuel in a cylindrical enclosure has been examined in this study. The pyrolysing fuel of cylindrical shape was located both eccentrically and concentrically inside an outer cylinder that was sustained at high temperature. Due to gravity, buoyancy motion was inevitably incurred in the enclosure, and this was found to affect the flame initiation and propagation behaviour. Radiative heat transfer also played an important role in the thermo-fluid mechanical behaviour because of the high temperature involved in the problem. Numerical studies have been performed for various parameters such as the Grashof number, overheat ratio, gas absorption coefficient and vertical fuel eccentricity. The flame behaviour and initiation were observed to be totally different depending on the Grashof number. Due to absorbed radiant energy, the radiative gas played a significant role in flame evolution. The location of flame onset was also affected by both the vertical eccentricity of the inner pyrolysing fuel and the thermal conditions applied. The heating process and the flow field development were found to govern flame initiation and propagation.  相似文献   

12.
The stoichiometry and the flame structure of the leading edge, an anchor point, of a non-premixed methane flame were investigated. Local equivalence ratio at an anchor point was measured using local chemiluminescence spectra with a high spatial resolution of 17 × 450 μm. Spatially and spectrally resolved chemiluminescence measurements were carried out along the centerline and radius of the non-premixed laminar flame. The chemiluminescence spectra measured at the flame tip contained very strong luminous spectra, while these continuous background spectra disappeared at the blue flame tip region. The chemiluminescence spectra below the blue flame region were very similar to those measured in laminar premixed methane/air flames. Based on these results, the local equivalence ratio near the anchor point was calculated. Therefore, we measure the anchor point location, its shape, and stoichiometry using the flame spectra. At the anchor point, there was an island of lower equivalence ratio of 0.65, which can be estimated as the lower flammable limit of premixed laminar flame. The size of the anchor point was of horizontal elliptical shape less than 0.6 and 0.4 mm in vertical length, which located at 1.2 mm above the burner rim and inside of the rim.  相似文献   

13.
Propagation of a H2-added strained laminar CH4/air flame in a rich-to-lean stratified mixture is numerically studied. The back-support effect, which is known to enhance the consumption speed of a flame propagating into a leaner mixture compared to that into a homogeneous mixture, is evaluated. A new method is devised to characterize unsteady reactant-to-reactant counterflow flames under transiently decreasing equivalence ratio, in order to elucidate the influence of flow strain on the back-support effect. In contrast to the conventional reactant-to-product configurations, the current configuration is more relevant to unsteady stratified flames back-supported by their own combustion products. Moreover, since H2 distribution downstream of the flame is known to play a crucial role in back-supported CH4/air flames, the influence of H2 addition in the upstream mixture is examined. The results suggest that a larger strain rate leads to a larger equivalence ratio gradient at the reaction zone through increased flow divergence, which amplifies the back-support. Meanwhile, since H2 addition in the upstream mixture does not affect the downstream H2 content, the relative increase in the consumption speed, i.e. the back-support, is suppressed with larger H2 addition. Especially, when the upstream H2 content decreases with the equivalence ratio, the H2 preferentially diffuses toward the unburned gas, which mitigates H2 accumulation in the preheat zone and further weakens the back-support.  相似文献   

14.
15.
A numerical study was conducted to analyze the effect of g-jitter on micro-gravity flames. A boundary layer laminar diffusion flame was used as a test case. This configuration is commonly used to study flame spread in microgravity, thus it is essential to understand the role of g-jitter in these flames. Furthermore, the role of buoyancy increases with the stream-wise coordinate permitting a systematic study of the impact of acceleration perturbations with a reduced number of experimental results. The evolution of experimental stand-off distances defined during parabolic flights compared well, in a qualitative manner, with numerical simulations, validating the aerodynamic aspects of the model. A systematic study using a sinusoidal function showed that perturbations characterized by high frequencies (>1 Hz) do not affect the flame stand-off distance. This is independent of the amplitude within the range of typical perturbations observed during parabolic flights. Perturbations occurring at lower frequencies significantly affected the flame geometry. Averaging over time through periods much longer than the perturbation cycle did not eventually reveal departure from purely zero-gravity flames. Fuel and oxidizer velocities have opposite effects on the sensitivity of the flames to gravity fluctuations. An increase in oxidizer velocity results in a sensitivity decrease. The influence of the multiple parameters of the problem can qualitatively be combined within a previously reported non-dimensional group. Nevertheless, it cannot account for the influence of frequency.  相似文献   

16.
Flow visualization data is presented to describe the structure of flames propagating in methane-air explosions in semi-confined enclosures. The role of turbulence is well established as a mechanism for increasing burning velocity by fragmenting the flame front and increasing the surface area of flames propagating in explosions. This area increase enhances the burning rate and increases the resultant explosion overpressure. In real situations, such as those found in complex process plant areas offshore, the acceleration of a flame front results from a complex interaction between the moving flame front and the local blockage caused by presence of equipment. It is clear that any localised increase in flame burn rate and overpressure would have important implications for any adjacent plant and equipment and may lead to an escalation process internal to the overall event. To obtain the information required to quantify the role of obstacles, it is necessary to apply a range of sophisticated laser-based, optical diagnostic techniques. This paper describes the application of high-speed, laser-sheet flow visualization and digital imaging to record the temporal development of the flame structure in explosions. Data is presented to describe the interaction of the propagating flame with a range of obstacles for both homogeneous and stratified mixtures. The presented image sequences show the importance of turbulent flow structures in the wake of obstacles for controlling the mixing of a stratified concentration field and the subsequent flame propagation through the wake. The data quantifies the flame speed, shape and area for a range of obstacle shapes.  相似文献   

17.
Using a detailed two-dimensional numerical model, a systematic investigation has been made to study the effect of fuel Lewis number (LeF = α/DF) and mass transfer on flame spread over thin solids. The fuel Lewis number affects the flame spread rates for both concurrent and opposed flames over thin fuels. The dependence of the flame spread rate on LeF for these two spreading modes is, however, not the same. In opposed flame spreads (zero-gravity, self-propagation, and normal gravity downward propagation), the flame spread rate vs. LeF curve is non-monotonic with a maximum value occurring at an intermediate value of LeF = 0.5. In steady, concurrent spread in zero-gravity with low-speed flow and a constant flame length, the flame spread rate decreases with LeF in a monotonic manner. By using the computational model as a tool, the effects of fuel mass diffusion perpendicular to and parallel with the solid surface are isolated to obtain more physical insight on the two-dimensional aspect of fuel mass transfer on flame spread. In addition, the model has also been used to decouple the solid evaporation process so that the fuel diffusion effect in the gas-phase can be isolated. Both of these theoretical exercises contribute to the understanding of mass transfer effects on the flame spreading phenomena over solids.  相似文献   

18.
A numerical study of one-dimensional n-heptane/air spray flames is presented. The objective is to evaluate the flame propagation speed in the case where droplets evaporate inside the reaction zone with possibly non-zero relative velocity. A Direct Numerical Simulation approach for the gaseous phase is coupled to a discrete particle Lagrangian formalism for the dispersed phase. A global two-step n-heptane/air chemical mechanism is used. The effects of initial droplet diameter, overall equivalence ratio, liquid loading and relative velocity between gaseous and liquid phases on the laminar spray flame speed and structure are studied. For lean premixed cases, it is found that the laminar flame speed decreases with increasing initial droplet diameter and relative velocity. On the contrary, rich premixed cases show a range of diameters for which the flame speed is enhanced compared to the corresponding purely gaseous flame. Finally, spray flames controlled by evaporation always have lower flame speeds. To highlight the controlling parameters of spray flame speed, approximate analytical expressions are proposed, which give the correct trends of the spray flame propagation speed behavior for both lean and rich mixtures.  相似文献   

19.
Mesoscale flame propagation and extinction of premixed flames in channels are investigated theoretically and experimentally. Emphasis is placed on the effect of wall heat loss and the wall–flame interaction via heat recirculation. At first, an analytical solution of flame speed in mesoscale channels is obtained. The results showed that channel width, flow velocity, and wall thermal properties have dramatic effects on the flame propagation and lead to multiple flame regimes and extinction limits. With the decrease in channel width, there exist two distinct flame regimes, a fast burning regime and a slow burning regime. The existence of the new flame regime and its extended flammability limit render the classical quenching diameter inapplicable. Furthermore, the results showed that at optimum conditions of flow velocity and wall thermal properties, mesoscale flames can propagate faster than the adiabatic flame. Second, numerical simulation with detailed chemistry demonstrated the existence of multiple flame regimes. The results also showed that there is a non-linear dependence of the flame speed on equivalence ratio. Moreover, it is shown that the Nusselt number has a significant impact on this non-linear dependence. Finally, the non-linear dependence of flame speed on equivalence ratio for both flame regimes is measured using a C3H8–air mixture. The results are in good agreement with the theory and numerical simulation.  相似文献   

20.
A theoretical model is developed to describe the spherical flame initiation and propagation. It considers endothermic chain-branching reaction and exothermic recombination reaction. Based on this model, the effects of endothermic chain-branching reaction on spherical flame initiation and propagation are assessed. First, the analytical solutions for the distributions of fuel and radical mass fraction as well as temperature are obtained within the framework of large activation energy and quasi-steady assumption. Then, a correlation describing spherical flame initiation and propagation is derived. Based on this correlation, different factors affecting spherical flame propagation and initiation are examined. It is found that endothermicity of the chain-branching reaction suppresses radical accumulation at the flame front and thus reduces flame intensity. With the increase of endothermicity, the unstretched flame speed decreases while both flame ball radius and Markstein length increases. Endothermicity has a stronger effect on the stretched flame speed with larger fuel Lewis number. The Markstein length is found to increase monotonically with endothermicity. Furthermore, the endothermicity of the chain-branching reaction is shown to affect the transition among different flame regimes including ignition kernel, flame ball, propagating spherical flame, and planar flame. The critical ignition power radius increases with endothermicity, indicating that endothermicity inhibits the ignition process. The influence of endothermicity on ignition becomes relatively stronger at higher crossover temperature or higher fuel Lewis number. Moreover, one-dimensional transient simulations are conducted to validate the theoretical results. It is shown that the quasi-steady-state assumption used in theoretical analysis is reasonable and that the same conclusion on the effects of endothermic chain-branching reaction can be drawn from simulation and theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号