首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Current Applied Physics》2018,18(6):626-632
The selective catalytic reduction (SCR) system for NOX removal in coal-fired power plants has a promoting effect on the oxidation and removal of elemental mercury. In this study, basic mechanism of mercury oxidation by V2O5-based SCR catalyst is investigated via density functional theory method and the periodic slab models. Calculations are conducted to determine the adsorption energies and geometries of Hg0, HgCl, HgCl2 and HCl on V2O5(001) surface, and to reveal the energy profile of oxidation reaction and the structures of relative transition states and intermediates. The results indicate that HCl can significantly promote Hg0 oxidation on V2O5(001) surface, by forming an intermediate HgCl-surface which is important for Hg0 oxidation. The Hg0 oxidation goes through Hg0 → HgCl → HgCl2, and the two stages of the reaction follow Eley–Rideal mechanism and Langmuir-Hinshelwood mechanism, respectively. The formation of HgCl2 is the rate-determining step due to its high energy barrier. Three detailed reaction pathways are obtained, and the related energy profiles and structures are analyzed in detail. The Hg0 oxidation reaction can take place through all three pathways even if differences exist in each other, while pathways I and II have relatively low energy barriers.  相似文献   

2.
MnO2-based catalysts have attracted great attention in the field of elemental mercury (Hg0) catalytic oxidation because of their superior catalytic performance and wide temperature window. Quantum chemistry calculations based on density functional theory (DFT) combined with periodic slab models were carried out to investigate the heterogeneous mechanism of Hg0 oxidation by oxygen species (gas-phase O2, chemisorbed oxygen, and lattice oxygen) on MnO2 surface. The results indicate that Hg0 and HgO are chemically adsorbed on MnO2 surface with the adsorption energies of ?69.50 and ?226.48?kJ/mol, respectively. The adsorption of O2 on MnO2 surface belongs to chemisorption. O2 can decompose on MnO2 surface with an energy barrier of 97.46?kJ/mol to produce two atomic adsorbed oxygen. The perpendicular adsorbed O2 and dissociative adsorbed O2 are more favorable for Hg0 catalytic oxidation than lattice oxygen, and perpendicular adsorbed O2 is the most active oxygen for Hg0 oxidation. The reaction pathway of Hg0 oxidation by perpendicular adsorbed O2 includes three reaction steps: Hg0?→?Hg(ads)?→?HgO(ads)?→?HgO. The third step (HgO(ads)?→?HgO) is endothermic by 168.17?kJ/mol with an energy barrier of 179.48?kJ/mol, and it is the rate-limiting step of the whole Hg0 oxidation reaction.  相似文献   

3.
The promotion of sulfur oxides on the selective catalytic reduction (SCR) of NO by hydrocarbons in the presence of a low concentration of sulfur oxides over Ag/Al2O3 has been investigated by a flow reaction test and in situ infrared spectroscopy. When the C3H6 (or C10H22) + NO + O2 feed-flow reaction was tested, maximum NO reduction was below 30% over fresh Ag/Al2O3. After the addition of SO2 to the feed flow, conversion increased slightly. Conversion increased further after SO2 was cut-off from the feed flow. This demonstrated that the increase in NO reduction activity of the catalyst was related to SOx adsorbed on the catalyst. SOx adsorbed on the catalytic surface (1375 cm−1) was detected by IR spectroscopy and was stable within the temperature range. NCO species, as an intermediate in NO reduction, on SOx-adsorbed Ag/Al2O3 in a C3H6 + NO + O2 feed flow was observed in in situ IR spectra during the elevation of the reaction temperature from 473 to 673 K, while it was only observed at 673 K on fresh Ag/Al2O3 under the same experimental conditions. We suggest that SOx in low concentrations depressed the combustion of reductants by contaminating hydrocarbon combustion active sites on the catalyst, resulting in an increase in NO reduction efficiency of the reductants.  相似文献   

4.
The nature of the NOx species produced during the adsorption of NO at room temperature and during its coadsorption with oxygen on LaMnAl11O19 sample with magnetoplumbite structure obtained by a sol-gel process has been investigated by means of in situ FT-IR spectroscopy. The adsorption of NO leads to formation of anionic nitrosyls and/or cis-hyponitrite ions and reveals the presence of coordinatively unsaturated Mn3+ ions. Upon NO/O2 adsorption at room temperature various nitro-nitrato structures are observed. The nitro-nitrato species produced with the participation of electrophilic oxygen species decompose at 350 °C directly to N2 and O2. No NO decomposition is observed in absence of molecular oxygen. The adsorbed nitro-nitrato species are inert towards the interaction with methane and block the active sites (Mn3+ ions) for its oxidation. Noticeable oxidation of the methane on the NOx-precovered sample is observed at temperatures higher than 350 °C due to the liberation of the active sites as a result of decomposition of the surface nitro-nitrato species. Mechanism explaining the promoting effect of the molecular oxygen in the NO decomposition is proposed.  相似文献   

5.
Oxygen-vacant titanium dioxide (TiO2−x ) nanoparticles were synthesized using thermal plasma as a heating source at various applied plasma currents and He/Ar ratios. Samples with diverse characteristics were developed and the mercury removal effectiveness was subsequently evaluated. TiO2 nanoparticles possessing high purity and uniform particle sizes were successfully synthesized using metal titanium and O2 as precursors and Ar as plasma gas. TiO2−x in anatase phase with a particle size at 5–10 nm was formed at the He/Ar volume ratio of 25/75. Further increasing the He/Ar ratio elevated the plasma temperature, causing the tungsten to melt, vaporize from the cathode, and then dope into the formed TiO2 nanoparticles. The doped W appeared to inhibit the growth of nanoparticles and decrease the crystallinity of formed anatase. The effectiveness of oxygen-vacant sites on Hg0 removal under the visible light circumstance was confirmed. Hg0 removal by the TiO2−x nanoparticles was enhanced by increasing the O2 concentration. However, moisture reduced Hg0 capture, especially when light irradiation was applied. The reduction in Hg0 capture may be resulted from the competitive adsorption of H2O on the active sites of TiO2−x with Hg0 and transformed Hg2+.  相似文献   

6.
Experiments and density functional theory calculations were conducted to uncover the reaction chemistry of Hg0 oxidation during SO2/SO3 conversion over V2O5/TiO2 catalyst. The results show that SO2 promotes Hg0 oxidation over V2O5/TiO2 catalyst with the assistance of oxygen. The promotional effect is dependent on the reaction temperature, and is associated with the bimolecular reaction between Hg0 and SO3 over V2O5/TiO2 catalyst. SO2 can be oxidized to SO3 which has high oxidation ability for Hg0 oxidation. SO2/SO3 conversion proceeds through a three-step reaction process in the sequence of SO2 adsorption → SO2 oxidation → SO3 desorption. SO2 oxidation presents an activation energy barrier of 223.84 kJ/mol. HgSO4 species is formed from the bimolecular reaction between Hg0 and SO3 over V2O5/TiO2 catalyst. Hg0 oxidation by SO3 over V2O5/TiO2 catalyst occurs through three reaction pathways, which are energetically favorable for HgSO4 formation. SO2* → SO3* is identified as the rate-determining step of HgSO4 formation. During Hg0 oxidation by SO3 over V2O5/TiO2 catalyst, HgSO4 desorption is a highly endothermic reaction process and requires a higher external energy. The proposed skeletal reaction network can be used to well understand the reaction mechanism of Hg0 oxidation during SO2/SO3 conversion over V2O5/TiO2 catalyst.  相似文献   

7.
《Infrared physics》1989,29(5):887-893
The intrinsic carrier concentration and carrier lifetime in Hg1−xMnxTe are calculated for the temperature range 77–300 K and the compositional range 0.07 ⩽ x ⩽ 0.20. The influence of different junction current components on the R0A product of p+n photodiodes at 77 K is analysed. The highest observed R0A values are determined by the generation-recombination current in the depletion layer. The comparison between results of calculations and the experimental data shows potential possibilities for constructing higher quality Hg1−xMnxTe photodiodes.  相似文献   

8.
The active catalytic components in tin oxide containing alumina-supported gold catalyst were examined by comparing and analysing the in situ Mössbauer spectra of the SnO x –Al2O3 support and the 3 wt.% Au/SnO x –Al2O3 catalyst (1.1 wt.% Sn, Au/Sn = 3:2 atomic ratio). Samples were prepared by using organometallic precursor of 119SnMe4 (enriched). First tin was grafted to the alumina surface from the organometallic precursor compound. In the next step the grafted complexes were decomposed in flowing oxygen. Gold was deposited onto the SnO x –Al2O3 support in the subsequent step. Analysis of in situ spectra shows that in Au/SnO x –Al2O3 catalyst after activation in hydrogen at 620 K tin may occur in three different oxidation states [Sn (IV), Sn(II) and Sn(0)] simultaneously. The metallic tin is a component of the bimetallic AuSn alloy phase. Data presented provide the first evidence for the formation of alloy-type supported Sn–Au catalyst on alumina. Furthermore, from the spectra recorded at different temperatures, values of the Debye temperatures and recoilless fractions were also determined for the various species. The results show that in catalytic oxidation of carbon monoxide at room temperature the dominant part of Sn(II) and the AuSn alloy is oxidized.  相似文献   

9.
The electrochemical oxidation of CH3OH at nanometer-scale PtRu catalyst materials is reported. Comparisons are made between the properties of a Johnson Matthey (JM) PtRu black sample (50 at.% Ru (XRu ≈ 0.5)) and PtRu particles (2-6 nm, nominally XRu ≈ 0.5) prepared by sonication under anhydrous conditions. Cyclic voltammetry and in situ infrared spectroscopy measurements show the catalysts are active for the oxidation of 0.5 M CH3OH in 0.1 M HClO4 at temperatures between ambient and 70 °C. The sonochemically prepared PtRu sample displayed properties characteristic of bulk PtRu alloys with XRu ≈ 0.5. Evidence for phase separation of Pt and Ru was observed in CO stripping voltammetry from the JM catalyst adsorbed at low metal loadings (20 μg/cm2) on bulk Au electrodes. Per gram of catalyst, the JM material was more active toward CO2 formation and displayed greater resistance to poisoning by adsorbed CO than the sonochemically prepared material during ambient temperature oxidation of 0.5 M CH3OH in 0.1 M HClO4.  相似文献   

10.
Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst during O2, NO, and CO adsorption at room temperature on 1 wt% Ru/MgF2 catalysts prepared from Ru3(CO)12 . Both EPR and IR results provided clear evidence for the interaction between surface ruthenium and probe molecules. No EPR signals due to ruthenium (Ru) species were recorded at 300 and 77 K after H2-reduction of the catalyst at 673 K. However, at 4.2 K a very weak EPR spectrum due to low-spin (4d5) Ru3+ complexes was detected. A weak anisotropic O2- radicals signal with g∣∣=2.017 and g=2.003 superimposed on a broad (ΔBpp=120 mT), slightly asymmetric line at g=2.45(1) was identified after O2 admission to the reduced sample. Adsorption of NO gives only a broad, Gaussian-shaped EPR line at g=2.43(1) indicating that the admission of NO, similarly to O2 adsorption, brings about an oxidation of Ru species in the course of the NO decomposition reaction. Introduction of NO over the CO preadsorbed catalyst leads to EPR spectrum with parameters g=1.996, g∣∣=1.895, and AN=2.9 mT assigned to surface NO species associated with Ru ions. The IR spectra recorded after adsorption of NO or CO probe molecules showed the bands in the range of frequency characteristic of ruthenium nitrosyl, nitro, and nitrate/nitrite species and the bands characteristic of ruthenium mono-and multicarbonyls, respectively. Addition of CO after NO admission to the catalyst leads to appearance in the IR spectrum, beside the ones characteristic of NO adsorption, the bands which can be attributed to Ru-CO2 and Ru-NCO species, indicating that the reaction between NO and CO occurs. These species were also detected after CO adsorption followed by NO adsorption, additionally to the band at 1850 cm−1 being due to cis-type species.  相似文献   

11.
The d.c. resistivity (ρ) of 15 Na2O, 20 CaO, 65 SiO2, xTiO2 (mole %) glasses with x = 0, 0.01, 0.03, 0.05, 0.15, 0.20, 0.25, 0.31, 0.38 and 0.50 was investigated in the temperature range 353–523 K. The conduction mechanism was mainly ionic with Na+ as a charge carrier. As x was increased the changes in glass resistivity are due to the suggested different structural contributions of Ti at various contents. For 0 ⩽ x ⩽ 0.05, In ρ increased due to the scattering effect of Ti modifiers. A drastic decrease in ln ρ was observed due to Ti-cluster formation in the range 0.05 < x < 0.15. A further increase in x (up to 0.50 mole %) led to a linear increase in ln ρ. The effect of gamma irradiation (up to dose value D = 76.5 Mr) on the conduction mechanism of the prepared glasses was also studied. An empirical model was adopted to fit the experimental plots of the glass resistivity as a function of x and D in the range 12.8 ⩽ ln D ⩽ 18.1. It is revealed that this glass system can be used as an electronic dosimeter.  相似文献   

12.
Christian Hess 《Surface science》2006,600(18):3695-3701
Nanostructured vanadia model catalysts, i.e., highly dispersed vanadium oxide supported on mesoporous silica SBA-15 (VOx/SBA-15), were prepared. The mechanism for the synthesis of VOx/SBA-15 was elucidated by detailed characterization of the individual synthesis steps using XPS and vibrational spectroscopy. The resulting surface vanadium oxide species (0-2.3 V/nm2), grafted on the inner pores of the SBA-15 silica matrix, consists of tetrahedrally coordinated vanadia as inferred from UV-VIS- and Raman spectroscopy. The prepared vanadia model catalysts were tested in the partial oxidation of methanol to formaldehyde yielding high formaldehyde selectivities of 94% at 350 °C. XPS and Raman analysis of the catalyst after reaction reveal the presence of methoxy as well as a significant amount of carbonaceous species on the surface. Our results demonstrate that a detailed understanding of partial oxidation reactions requires the combination of complementary spectroscopic techniques ultimately within one experimental set-up.  相似文献   

13.
This paper firstly investigated the interplay effect on simultaneous catalytic oxidation of NO and toluene. Four tunnel-structure polymorphs, i.e., α-MnO2, β-MnO2, γ-MnO2 and δ-MnO2, were synthesized to compare individual and simultaneous oxidation of NO and toluene. Results demonstrated that toluene significantly inhibited NO conversion that near zero efficiencies were observed at low temperature over the four catalysts. Subsequently, NO oxidation efficiency climbed rapidly to the equivalent value as absence of toluene. In addition, presence of NO also elevated toluene conversion into higher temperature of 10–20 °C than that without NO. The reaction between toluene and oxygen took the superiority during simultaneous oxidation with NO. NO oxidation efficiency started to increase until toluene degradation approaching to the equilibrium. However, this competition seemed to be negligible at high temperature that both toluene and NO attained high conversion efficiencies. These findings provide a feasible way for simultaneous removal of NOx and VOCs using catalytic oxidation as well as selecting an optimal temperature window.  相似文献   

14.
W-doped TiO2 were immobilized on fiberglass cloth (FGC). The catalyst possessed small crystallite sizes with a red-shift on an absorption edge. Good dispersion was observed over the immobilized catalyst. The photocatalytic degradation of gaseous BTEX was conducted in a flow reactor under day-light fluorescent. Parameters including gas flowrate, catalyst loading, initial concentration and relative humidity (%RH) were investigated. The prepared catalysts showed higher efficiency than that of TiO2 approximately 18, 3, 3 and 2.5× for benzene, toluene, ethylbenzene and o-xylene, respectively. The condition to achieve 100% BTEX removal was found at 20 min/ml, catalyst loading 0.1 mg/cm2 and 30% RH.  相似文献   

15.
A Landau-level broadening-dependent phase shift has been observed between the Shubnikovde Haas oscillations of the magnetoresistance and the Hall effect in a series of Hg1−xMnxTe and Hg1−xCdxTe samples. The phase shift varies between 0 and 90° and appears not to be influenced by the exchange interaction between the Mn2+ ions and the carriers. The results are in good agreement with the theoretical predictions for short range scattering potentials.  相似文献   

16.
The absorption intensities of the 1-0 and 2-0 vibration-rotation bands of NO are determined from the absorption coefficients of NOHe and NOAr gaseous mixtures at high pressures at room temperature. The values obtained are: A1-0 = 121 ± 6 cm?2 Agt?1 and A2-0 = 2.17 ± 0.11 cm?2 Agt?1. A theory developed by Tipping is applied to evaluate the dipole moment coefficients unambiguously, including their signs, from the absolute intensity values and the difference between the mean frequency factor and the band origin. The following expansion for the dipole moment function in the ground state of NO is determined: M(x) = ?0.166 + 2.54x ? 1.99x2 (in Debye). The absorption profiles of both the 1-0 and 2-0 bands in NOAr mixtures show marked changes as gas pressure increases; some of the factors influencing the shapes of the bands are also discussed. The plots of the integrated intensity vs rare gas density are found to be straight lines with positive slopes. This linear increase of the band intensity with density is interpreted as mainly due to the apparent induced absorption.  相似文献   

17.
《Current Applied Physics》2018,18(2):150-154
The electronic structure and magnetic properties of polycrystalline BaTi1-xMnxO3 (x = 0–0.1) compounds prepared by solid-state reactions were studied. The results revealed that the increase in Mn content (x) did not change the oxidation numbers of Ba (+2) and Ti (+4) in BaTi1-xMnxO3. However, there is the change in Mn valence that Mn3+,4+ ions coexist in the samples with x = 0.01–0.04 while Mn4+ ions are almost dominant in the samples with x = 0.06–0.1. We also point out that Mn3+ and Mn4+ ions substitute for Ti4+ and prefer locating in the tetragonal and hexagonal BaTiO3 structures, respectively, in which the hexagonal phase constitutes soon as x = 0.01. Particularly, all the samples exhibit room-temperature ferromagnetism. Ferromagnetic order increases with increasing x from 0 to 0.02, but decreases as x ≥ 0.04. We think that ferromagnetism in BaTi1-xMnxO3 is related to lattice defects and/or exchange interactions between Mn3+ and Mn4+ ions.  相似文献   

18.
The structural, energetic and electronic properties of germanene adsorbed with small nitrogen-based molecules, including N2, NH3, NO2 and NO, have been investigated by using first-principles calculations. The results show that all nitrogen-based molecules considered bind much stronger to germanene than to graphene due to the hybridized sp2-sp3 bonding of Ge atoms. The N2, NO and NO2 molecules all act as an acceptor, while the NH3 molecule donates electrons to germanene. We also found sizable band gaps (2–158 meV) are opened at the Dirac point of germanene through N2, NH3, and NO2 adsorptions, but with only slightly destroying its Dirac cone shape. The NO2 molecule also shows a heavy p-type doping character and makes germanene to be metallic. Moreover, when adsorbed by NO molecule, the germanene can change to be a ferromagnetic half-metal with 100% spin-polarization at the Fermi level. Overall, the different adsorption behaviors of small nitrogen-based gas molecules on germanene provide a feasible way to exploit chemically modified germanene for a wide range of practical applications, such as field-effect transistors, gas sensors and spintronic devices.  相似文献   

19.
Due to the water-insoluble nature of Hg0, its oxidization to Hg2+, which is water-soluble, is a viable approach for its effective removal at coal-fired plants using existing flue gas desulfurization (FGD) unit. In this study, the adsorption and oxidation of elemental mercury on an Mn-doped g-C3N4 material were investigated. The spin-polarized density functional theory method was adapted to optimize the geometry structures and then to determine the corresponding electronic structures, while the CI-NEB method was adopted to search for the stable intermediates during the reaction(s). The analysis of energy and project density of states shows that the Mn-g-C3N4 exhibits an excellent affinity to Hg atoms. It is found that it is feasible for Hg atoms to oxidize on the Mn-g-C3N4 surface via two possible E-R paths, but with relatively high energy barriers. This research provides insights into a viable way for mercury removal using O2 as the oxidizing agent.  相似文献   

20.
We investigated the influence of insulating barrier thickness and the Ti composition dependence of the band structure of Al-oxide on the resistance and tunneling magnetoresistance (TMR) behavior of the magnetic tunnel junction (MTJ). Low resistance × area (RA) value (1.1  μm2) was achieved by decreasing the Al-oxide thickness down to 1.0 nm. However, this led to the partial oxidation of the bottom ferromagnetic (FM) electrode of the junction and non-continuous thin barriers by the occurrence of pinholes, with low TMR ratio of 8.3%. For an alternative for low RA value, we developed a new Ti-alloyed Al-oxide (TiAlOx) that had lower band gap than Al-oxide as an insulating barrier of MTJ. As the Ti concentration increased up to 5.33 at.% Ti in Al, the RA value of the MTJs was reduced from 9.5 to 0.69  μm2, owing to the band-gap reduction of TiAlOx caused by the formation of extra bands, mainly composed of Ti-3d orbitals, within the band gap. It was analyzed that TiAlOx has localized d states in the band gap below the conduction band. In addition, the TMR ratio increased with the Ti concentration and reached a maximum of 49% at 5.33 at.% Ti owing to the microstructural evolution of Ti–Al alloy film in the pre-oxidation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号