首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flame surface density (FSD) based reaction rate closure is an important methodology of turbulent premixed flame modelling in the context of Large Eddy Simulations (LES). The transport equation for the Favre-filtered reaction progress variable needs closure of the filtered reaction diffusion imbalance (FRDI) term (i.e. filtered value of combined reaction rate and molecular diffusion rate) and the sub-grid scalar flux (SGSF). A-priori analysis of the FRDI and SGSF terms has in the past revealed advantages and disadvantages of the specific modelling attempts. However, it is important to understand the interaction of the FRDI and SGSF closures for a successful implementation of the FSD based closure. Furthermore, it is not known a-priori if the combination of the best SGSF model with the best FRDI model results in the most suitable overall modelling strategy. In order to address this question, a variety of SGSF models is analysed in this work together with one well established and one recent FRDI closure based on a-priori analysis. It is found that the success of the combined FRDI and SGSF closures depends on subtle details like the co-variances of the FRDI and SGSF terms. It is demonstrated that the gradient hypothesis model is not very successful in representing the SGSF term. However the gradient hypothesis provides satisfactory performance in combination of a recently proposed FRDI closure, whereas unsatisfactory results are obtained when used in combination with another existing closure, which was shown to predict the FRDI term satisfactorily in several previous analyses.  相似文献   

2.
It is unclear whether turbulent flame speed scalings established in low speed regimes are applicable to supersonic flames. To investigate this question, the canonical flame kernel is investigated in a scramjet-like channel having a one degree wall divergence. The growth, shape and internal kernel dynamics are investigated. Results are presented for three Mach numbers, four equivalence ratios, and three turbulence generators. Schlieren photography provides flame images for growth rate statistics and particle image velocimetry (PIV) provides turbulence statistics and investigation of internal kernel dynamics. Supersonic flame kernels are self-propagating and respond to the equivalence ratio in a fashion that is similar to low speed flames. However, supersonic flame kernels have features that are not present in subsonic flame kernels. Baroclinicity, resulting from pressure-density misalignment, creates a reacting vortex ring structure. Further, the mean kernel shape has a Mach number dependence and the vortex ring enhances the turbulent flame speed through entrainment of reactants and augmented flame surface growth. Hence, the previously established (low speed) flame speed scalings are inappropriate for supersonic flame kernels. Drawing motivation from vortex ring literature, the ring propagation velocity is used as the characteristic velocity and a new flame speed scaling is proposed.  相似文献   

3.
4.
5.
6.
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants.  相似文献   

7.
Flame turbulence interaction is one of the leading order terms in the scalar dissipation \(\left (\widetilde {\varepsilon }_{c}\right )\) transport equation [35] and is thus an important phenomenon in premixed turbulent combustion. Swaminathan and Grout [36] and Chakraborty and Swaminathan [15, 16] have shown that the effect of strain rate on the transport of \(\widetilde {\varepsilon }_{c}\) is dominated by the interaction between the fluctuating scalar gradients and the fluctuating strain rate, denoted here by \(\overline {\rho }\widetilde {\Delta }_{c}= \overline {\rho {\alpha }\nabla c^{\prime \prime }S_{ij}^{\prime \prime }\nabla c^{\prime \prime }}\) ; this represents the flame turbulence interaction. In order to obtain an accurate representation of this phenomenon, a new evolution equation for \(\widetilde {\Delta }_{c}\) has been proposed. This equation gives a detailed insight into flame turbulence interaction and provides an alternative approach to model the important physics represented by \(\widetilde {\Delta }_{c}\) . The \(\widetilde {\Delta }_{c}\) evolution equation is derived in detail and an order of magnitude analysis is carried out to determine the leading order terms in the \(\widetilde {\Delta }_{c}\) evolution equation. The leading order terms are then studied using a Direct Numerical Simulation (DNS) of premixed turbulent flames in the corrugated flamelet regime. It is found that the behaviour of \(\widetilde {\Delta }_{c}\) is determined by the competition between the source terms (pressure gradient and the reaction rate), diffusion/dissipation processes, turbulent strain rate and the dilatation rate. Closures for the leading order terms in \(\widetilde {\Delta }_{c}\) evolution equation have been proposed and compared with the DNS data.  相似文献   

8.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

9.

The relations between the actual flame curvature probability density function (PDF) evaluated in three-dimensions and its two-dimensional counterpart based on planar measurements have been analytically derived subject to the assumptions of isotropy and statistical independence of various angles and two-dimensional curvature. These relations have been assessed based on Direct Numerical Simulation (DNS) databases of turbulent premixed (a) statistically planar and (b) statistically axisymmetric Bunsen flames. It has been found that the analytically derived relation interlinking the PDFs of actual three-dimensional curvature and its two-dimensional counterpart holds reasonably well for a range of curvatures around the mean value defined by the inverse of the thermal flame thickness for different turbulence intensities across different combustion regimes. The flame surface is shown to exhibit predominantly two-dimensional cylindrical curvature but there is a significant probability of finding saddle type flame topologies and this probability increases with increasing turbulence intensity. The presence of saddle type flame topologies affects the ratios of second and third moments of two-dimensional and three-dimensional curvatures. It has been demonstrated that the ratios of second and third moments of two-dimensional and three-dimensional curvatures cannot be accurately predicted based on two-dimensional measurements. The ratio of the third moments of two-dimensional and three-dimensional curvatures remains positive and thus the qualitative nature of curvature skewness can still be obtained based on two-dimensional curvature measurements. As the curvature skewness is often taken to be a marker of the Darrius-Landau instability, the conclusion regarding the presence of this instability can potentially be taken from the two-dimensional curvature measurements.

  相似文献   

10.
Topology and brush thickness of turbulent premixed V-shaped flames were investigated using Mie scattering and Particle Image Velocimetry techniques. Mean bulk flow velocities of 4.0, 6.2, and 8.3 m/s along with two fuel-air equivalence ratios of 0.6 and 0.7 were tested in the experiments. Using a novel experimental turbulence generating apparatus, three turbulence intensities of approximately 2 %, 6 %, and 17 % were tested in the experiments. The results show that topology of the flame front is significantly altered by changing the turbulence intensity. Specifically, at relatively small turbulence intensities, the flame fronts feature wrinkles which are symmetric with respect to the vertical axis. At moderate values of turbulence intensities, the flame fronts form cusps. The formation of cusps is more pronounced at large mean bulk flow velocities. The results associated with relatively large turbulence intensity show that flame surfaces feature: mushroom-shaped structures, freely propagating sub-flames, pocket formation, localized extinction, and horn-shaped structures. Analysis of the results show that the flame brush thickness follows a linear correlation with the root-mean-square of the flame front position. The correlation is in agreement with the results of past experimental investigations associated with moderately turbulent premixed V-shaped flames, and holds for the range of turbulence conditions tested. This suggests that the underlying mechanism associated with the dynamics of moderately turbulent premixed V-shaped flames proposed in past studies can potentially be valid for the the wide range of turbulence conditions examined in the present investigation.  相似文献   

11.
The effects of mean flame curvature on reaction progress variable gradient, $\nabla c$ , alignment with local turbulent strain rate are studied based on three-dimensional Direct Numerical Simulation (DNS) data of turbulent premixed flame kernels with different initial radii under decaying turbulence. A statistically planar flame is also considered in order to compare the results obtained from the kernels with a flame of zero mean curvature. It is found that the dilatation rate effects diminish with decreasing kernel radius due to defocusing of heat in the positively curved regions. This gives rise to a decrease in the extent of reaction progress variable gradient alignment with most extensive principal strain rate with decreasing kernel radius. The modelling implications of the statistics of the alignment of $\nabla c$ with local strain rate have been studied in terms of scalar dissipation rate transport. A new modelling methodology for the contribution of the scalar-turbulence interaction term in the transport equation for the mean scalar dissipation is suggested addressing the reduced effects of dilatation rate for flame kernels and the diminished value of turbulent straining at the small length scales at which turbulence interacts with small flame kernels. The performance of the new models is found to be satisfactory while comparing to DNS results. The existing models for the dilatation contribution and the combined chemical reaction and molecular dissipation contributions to the transport of mean scalar dissipation, which were originally proposed for statistically planar flames, are found to satisfactorily predict the corresponding quantities for turbulent flame kernels.  相似文献   

12.
Flame Surface Density in Turbulent Premixed V-Flame with Buoyancy   总被引:1,自引:0,他引:1  
A fractional step numerical model is established for turbulent premixed combustion with buoyancy. The flame front propagation is described by the level-set method. Simulated results without buoyancy have been previously validated with available experimental data on a premixed V-flame. A new formula is presented to fit the flame surface density with respect to the reaction progress variable in a turbulent premixed V-flame. By numerical simulations, dynamical behaviour of the flame under the interaction of turbulence, exothermicity and buoyancy are investigated.  相似文献   

13.
The accuracy of large-eddy simulation (LES) of a turbulent premixed Bunsen flame is investigated in this paper. To distinguish between discretization and modeling errors, multiple LES, using different grid sizes h but the same filterwidth Δ, are compared with the direct numerical simulation (DNS). In addition, LES using various values of Δ but the same ratio Δ/h are compared. The chemistry in the LES and DNS is parametrized with the standard steady premixed flamelet for stochiometric methane-air combustion. The subgrid terms are closed with an eddy-viscosity or eddy-diffusivity approach, with an exception of the dominant subgrid term, which is the subgrid part of the chemical source term. The latter subgrid contribution is modeled by a similarity model based upon 2Δ, which is found to be superior to such a model based upon Δ. Using the 2Δ similarity model for the subgrid chemistry the LES produces good results, certainly in view of the fact that the LES is completely wrong if the subgrid chemistry model is omitted. The grid refinements of the LES show that the results for Δ = h do depend on the numerical scheme, much more than for h = Δ/2 and h = Δ/4. Nevertheless, modeling errors and discretization error may partially cancel each other; occasionally the Δ = h results were more accurate than the h ≤ Δ results. Finally, for this flame LES results obtained with the present similarity model are shown to be slightly better than those obtained with standard β-pdf closure for the subgrid chemistry.  相似文献   

14.
The flame curvature statistics of turbulent premixed Bunsen flames have been analysed in this paper using a Direct Numerical Simulation (DNS) database of turbulent Bunsen flames at ambient and elevated pressures. In order to be able to perform a large parametric study in terms of pressure, heat release parameter, turbulence conditions and nozzle diameter, a single step Arrhenius type irreversible chemistry has been used for the purpose of computational economy, where thermo-chemical parameters are adjusted to match the behavior of stoichiometric methane-air flames. This analysis focuses on the characterization of the local flame geometry in response to turbulence and hydro-dynamic instability. The shape of the flame front is found to be consistent with existing experimental data. Although the Darrieus Landau instability promotes cusp formation, a qualitatively similar flame morphology can be observed for hydro-dynamically stable flames. A criterion has been suggested for the curvature PDF to become negatively skewed.  相似文献   

15.
A large eddy simulation of a turbulent premixed flame propagatingthrough a chamber containing a square obstruction is presented anddiscussed. The governing equations for compressible, reacting flowsare Favre filtered and turbulence closure is achieved using thedynamic Smagorinsky subgrid model. A simple flame surface densitymodel based on the flamelet concept is employed for the subgrid scalereaction rate. The simulation gives very good agreement with experimentalresults for the speed and the shape of the flame as it propagates throughthe chamber. The peak pressures, however, are underpredicted by20–30%. Reasons for this are discussed and it is concluded that amore sophisticated combustion model is required for complex flowssuch as this one, if a more accurate prediction of the pressureis to be achieved.  相似文献   

16.
Transition from gradient to countergradient scalar transport in a statistically planar, one-dimensional, developing, premixed turbulent flame is studied both theoretically and numerically. A simple criterion of the transition referred to is derived from the balance equation for the combustion progress variable, with the criterion highlighting an important role played by flame development. A balance equation for the difference in velocities $\bar{u}_b$ and $\bar{u}_u$ conditioned on burned and unburned mixture, respectively, is numerically integrated. Both analytical and computed results show that; (1) The flux $\overline{\rho u'' c''}$ is gradient during an early stage of flame development followed by transition to countergradient scalar transport at certain instant t tr . (2) The transition time is increased when turbulence length scale L is increased or when the laminar flame speed S L and/or the density ratio are decreased. (3) The transition time normalized using the turbulence time scale is increased by u??. Moreover, the numerical simulations have shown that the transition time is increased by u?? if a ratio of u??/S L is not large. This dependence of t tr on u?? is substantially affected by (i) the mean pressure gradient induced within the flame due to heat release and (ii) by the damping effect of combustion on the growth rate of mean flame brush thickness. The reasonable qualitative agreement between the computed trends and available experimental and DNS data, as well as the agreement between the computed trends and the present theoretical results, lends further support to the conditioned balance equation used in the present work.  相似文献   

17.
18.

The effects of varying turbulence intensity and turbulence length scale on premixed turbulent flame propagation are investigated using Direct Numerical Simulation (DNS). The DNS dataset contains the results of a set of turbulent flame simulations based on separate and systematic changes in either turbulence intensity or turbulence integral length scale while keeping all other parameters constant. All flames considered are in the thin reaction zones regime. Several aspects of flame behaviour are analysed and compared, either by varying the turbulence intensity at constant integral length scale, or by varying the integral length scale at constant turbulence intensity. The turbulent flame speed is found to increase with increasing turbulence intensity and also with increasing integral length scale. Changes in the turbulent flame speed are generally accounted for by changes in the flame surface area, but some deviation is observed at high values of turbulence intensity. The probability density functions (pdfs) of tangential strain rate and mean flame curvature are found to broaden with increasing turbulence intensity and also with decreasing integral length scale. The response of the correlation between tangential strain rate and mean flame curvature is also investigated. The statistics of displacement speed and its components are analysed, and the findings indicate that changes in response to decreasing integral length scale are broadly similar to those observed for increasing turbulence intensity, although there are some interesting differences. These findings serve to improve current understanding of the role of turbulence length scales in flame propagation.

  相似文献   

19.
This paper proposes a combustion model based on a turbulent flame speed closure (TFC) technique for large eddy simulation (LES) of premixed flames. The model was originally developed for the RANS (Reynolds Averaged Navier Stokes equations) approach and was extended here to LES. The turbulent quantities needed for calculation of the turbulent flame speed are obtained at the sub grid level. This model was at first experienced via an test case and then applied to a typical industrial combustor with a swirl stabilized flame. The paper shows that the model is easy to apply and that the results are promising. Even typical frequencies of arising combustion instabilities can be captured. But, the use of compressible LES may also lead to unphysical pressure waves which have their origin in the numerical treatment of the boundary conditions.  相似文献   

20.
In order to determine the mean rate of product creation within the framework of the Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined with a simple closure of turbulent scalar flux developed recently by the present authors based on the flamelet concept of turbulent burning. The model combination is assessed by numerically simulating statistically planar, one-dimensional, developing premixed flames that propagate in frozen turbulence. The mean rate of product creation yielded by the combined model decreases too slowly at the trailing edges of the studied flames, with the effect being more pronounced at longer flame-development times and larger ratios of rms turbulent velocity u′ to laminar flame speed S L . To resolve the problem, the above closure of turbulent scalar flux is modified and the combination of the modified closure and TFC model yields reasonable behaviour of the studied rate. In particular, simulations indicate an increase in the mean combustion progress variable associated with the maximum rate by u′/S L , in line with available DNS data. Finally, the modified closure of turbulent scalar flux is validated by computing conditioned velocities and turbulent scalar fluxes in six impinging-jet flames. The use of the TFC model for simulating such flames is advocated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号