首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is performed to experimentally examine the fundamental burning velocity characteristics of meso-scale outwardly propagating spherical laminar flames in the range of flame radius rf approximately from 1 to 5 mm for hydrogen, methane and propane mixtures, in order to make clear a method for improving combustion of micro–meso scale flames. Macro-scale laminar flames with rf > 7 mm are also examined for comparison. The mixtures have nearly the same laminar burning velocity (SL0 = 25 cm/s) for unstretched flames and different equivalence ratios ?. The radius rf and the burning velocity SLl of meso-scale flames are estimated by using sequential schlieren images recorded under appropriate ignition conditions. It is found that SLl of hydrogen and methane premixed meso-scale flames at the same rf or the Karlovitz number Ka shows a tendency to increase with decreasing ?, whereas SLl of propane flames increases with ?. However, SLl tends to decrease with the Lewis number Le and the Markstein number Ma, irrespective of the type of fuel and ?. It also becomes clear that the optimum flame size and Ka to improve the burning velocity exist for some mixtures depending on Le and fuel types.  相似文献   

2.
In order to study the combustion chemistry of carboxyl functionality, the laminar burning velocity of acetic acid/air and propanoic acid/air mixtures was investigated in a high-pressure constant-volume cylindrical combustion vessel at 423 K, 1 atm and equivalence ratios of 0.7–1.4. Experimental results reveal that the flame propagation of propanoic acid flame is much faster than that of acetic acid flame, especially under rich conditions, and the laminar burning velocity of propanoic acid/air mixtures peaks at richer conditions than that of acetic acid. The present theoretical calculations for the isomerization and decomposition of propanoic acid radicals indicate that the primary radical products are HOCO, H and C2H5, while those in acetic acid flame are CH3 and OH based on previous studies. A kinetic model of the two acids was developed mainly based on previous and the present theoretical calculation results. It could reasonably capture the measured laminar burning velocities of acetic acid/air and propanoic acid/air mixtures in this work, as well as the previous experimental data in literature. Based on the present model, CH3- and ketene-related pathways play an important role in acetic acid flames. Under rich conditions, ketene is mostly converted to CH3 via CH2CO+HCH3+CO, and the chain-termination reaction of CH3+H(+M)=CH4(+M) is enhanced, which strongly inhibits the propagation of rich acetic acid flames. In contrast, C2H5 and ethylene chemistry play an important role in propanoic acid flames. Rich conditions promote the decomposition of C2H5, yielding ethylene and H, which can facilitate the flame propagation. This can explain the shift of the peak laminar burning velocity of propanoic acid/air mixtures towards a slightly richer condition compared with that of acetic acid/air mixtures.  相似文献   

3.
A premixed methane–air bunsen-type flame is seeded with micron-sized (d32 = 5.6 μm) atomized aluminum powder over a wide range of solid fuel concentrations. The burning velocities of the resulting two-phase hybrid flame are determined using the total surface area of the inner flame cone and the known volumetric flow rate, and spatially resolved flame spectra are obtained with a spectral scanning system. Flame temperatures are derived through polychromatic fitting of Planck’s law to the continuous part of the spectrum. It is found that an increase in the solid fuel concentration changes the aluminum combustion regime from low temperature oxidation to full-fledged flame front propagation. For stoichiometric methane–air mixtures, the transition occurs in the aluminum concentration range of 140–220 g/m3 and is manifested by the appearance of AlO sub-oxide bands and an increase in the flame temperature to 2500 K. The flame burning velocity is found to decrease only slightly with an increase in aluminum concentration, in contrast to the rapid decrease in flame speed, followed by quenching, that is observed for flames seeded with inert SiC particles. The observed behavior of the burning velocity and flame temperature leads to the conclusion that intense aluminum combustion in a hybrid flame only occurs when the flame front propagating through the aluminum suspension is coupled to the methane–air flame.  相似文献   

4.
Understanding the ion chemistry in flames is crucial for developing ion sensitive technologies for controlling combustion processes. In this work, we measured the spatial distributions of positive ions in atmospheric-pressure burner-stabilized premixed flames of ethylene/oxygen/argon mixtures in a wide range of equivalence ratios ϕ = 0.4÷1.5. A flame sampling molecular beam system coupled with a quadrupole mass spectrometer was used to obtain the spatial distributions of cations in the flames, and a high mass resolution time-of-flight mass spectrometer was utilized for the identification of the cations having similar m/z ratios. The measured profiles of the flame ions were corrected for the contribution of hydrates formed during sampling in the flames slightly upstream the flame reaction zone. We also proposed an updated ion chemistry model and verified it against the experimental profiles of the most abundant cations in the flames. Our model is based on the kinetic mechanism available in the literature extended with the reactions for C3H5+ cation. Highly accurate W2-F12 quantum chemical calculations were used to obtain a reliable formation enthalpy of C3H5+. The model was found to reproduce properly the measured relative abundance of the key oxygenated cations (viz., CH5O+, C2H3O+) in the whole range of equivalence ratios employed, and the C3H5+ cation abundance in the richest flame with ϕ=1.5, but significantly underpredicts the relative mole fraction of C3H3+, which becomes a key species under fuel-rich conditions. Apart from this, several aromatic and cyclic CxHy cations dominating under fuel-rich conditions were identified. We also considered the most important directions for the further refinement of the mechanism.  相似文献   

5.
This work investigates experimentally and numerically the kinetic effects of water vapor addition on the burning rates of H2, H2/CO mixtures, and C2H4 from 1 atm to 10 atm at flame temperatures between 1600 K and 1800 K. Burning rates were measured using outwardly propagating spherical flames in a nearly constant pressure chamber. Results show good agreement with newly updated kinetic models for H2 flames. However, there is considerable disagreement between simulations and measurements for H2/CO and C2H4 flames at high pressure and high water vapor dilution. Both experiments and simulations show that water vapor addition causes a monotonic decrease in mass burning rate and the inhibitory effect increases with pressure. For hydrogen flames, water vapor addition reduces the critical pressure above which a negative pressure dependence of the burning rate is observed. However, for C2H4 flames, the burning rate always increases with pressure. The results also show that water vapor addition has the same effect as a pressure increase for H2 and H2/CO flames, shifting the reaction zone into a narrower window at higher temperatures. For all fuels, water vapor addition increases OH formation via H2O + O while reducing the overall active radical pool for hydrogen flames. For C2H4, the additional HO2 production pathway through HCO results in a dramatic difference in pressure dependence of the burning rate from that observed for hydrogen. The present work provides important additions to the experimental database for syngas and C0–C2 high pressure kinetic model validations.  相似文献   

6.
The laminar flame speed is an important property of a reacting mixture and it is used extensively for the characterization of the combustion process in practical devices. However, under engine-relevant conditions, considerable reactivity may be present in the unburned mixture, introducing thus challenges due to couplings of auto-ignition and flame propagation phenomena. In this study, the propagation of transient, one-dimensional laminar flames into a reacting unburned mixture was investigated numerically in order to identify the parameters influencing the flame burning rate in the conduction-reaction controlled regime at constant pressure. It was found that the fuel chemical classification significantly influences the burning rate. More specifically, for hydrogen flames, the “evolution” of the burning rate does not depend on the initial unburned mixture temperature. On the other hand, for n-heptane flames that exhibit low temperature chemistry, the burning rate depends on the instantaneous temperature and composition of the unburned mixture in a coupled way. A new approach was developed allowing for the decoupling the flame chemistry from the ignition dynamics as well as for the decoupling of parameters influencing the burning rate, so that meaningful sensitivity analysis could be performed. It was determined that the burning rate is not directly affected by fuel specific reactions even in the presence of low temperature chemistry whose effect is indirect through the modification of the reactants composition entering the flame. The controlling parameters include but not limited to mixture conductivity, enthalpy, and the species composition evolution in the unburned mixture.  相似文献   

7.
Experimental measurements of the adiabatic burning velocity in neat and NO formation in CH4 + O2 + Ar flames doped with small amounts of N2O are presented. The oxygen content in the oxidizer was varied from 15 to 17%. Non-stretched flames were stabilized on a perforated plate burner at 1 atm. The Heat Flux method was used to determine burning velocities under conditions when the net heat loss of the flame is zero. Adiabatic burning velocities of methane + oxygen + argon mixtures were found in satisfactory agreement with the modeling. The NO concentrations in the flames doped with N2O (100 ppm in the argon stream before mixing) were measured in the burnt gases at a fixed distance from the burner using probe sampling. Axial profiles of [NO] were found insensitive to the downstream heat losses. Experimental dependencies of [NO] versus equivalence ratio had a maximum between φ = 1.1 and 1.2. Calculated concentrations of NO were in good agreement with the measurements. In lean flames calculated concentrations of NO strongly depends on the rate constant of reaction N2O + O=NO + NO if too high values proposed in the literature are employed. These new experimental data thus allowed for validation of the key reactions of the nitrous oxide mechanism of NO formation in flames.  相似文献   

8.
Flame propagation of aluminum–ice (ALICE) mixtures is studied theoretically and experimentally. Both a mono distribution of nano aluminum particles and a bimodal distribution of nano- and micron-sized aluminum particles are considered over a pressure range of 1–10 MPa. A multi-zone theoretical framework is established to predict the burning rate and temperature distribution by solving the energy equation in each zone and matching the temperature and heat flux at the interfacial boundaries. The burning rates are measured experimentally by burning aluminum–ice strands in a constant-volume vessel. For stoichiometric ALICE mixtures with 80 nm particles, the burning rate shows a pressure dependence of rb = aPn, with an exponent of 0.33. If a portion of 80 nm particles is replaced with 5 and 20 μm particles, the burning rate is not significantly affected for a loading density up to 15–25% and decreases significantly beyond this value. The flame thickness of a bimodal-particle mixture is greater than its counterpart of a mono-dispersed particle mixture. The theoretical and experimental results support the hypothesis that the combustion of aluminum–ice mixtures is controlled by diffusion processes across the oxide layers of particles.  相似文献   

9.
NO formation and flame propagation are studied in premixed flames of iso- and n-isomers of butane and butanol through experimental measurements and direct simulation of experimental profiles. The stabilized flame is realized through the impingement of a premixed combustible jet from a contraction nozzle against a temperature-controlled plate. The velocity field is obtained by means of Particle Image Velocimetry (PIV) and nitric oxide concentration profiles are measured using Planar Laser Induced Fluorescence (PLIF), calibrated using known NO seeding levels. It is found that NO formation in n- and iso-isomers is comparable under the conditions considered, except for rich butanol mixtures, whereby NO formation is higher for iso-butanol. Generally, less NO is formed in butanol flames than in the butane flames. The experiment is simulated by a 1D chemically reacting stagnation flow model, using literature models of C1–C4 hydrocarbons [Wang et al., 2010] and butanol combustion chemistry [Sarathy et al., 2009, 2012]. NO prediction is tested using two of these mechanisms with a previously-published NOx submechanism added into the butane and butanol models. While a good level of agreement is observed in the velocity field prediction under lean and stoichiometric conditions, discrepancies exist under rich conditions. Greater discrepancies are observed in NO prediction, except for the C1–C4 mechanism which shows good agreement with the experiment under lean and stoichiometric conditions. The current study provides data for further development of mechanisms with NOx prediction capabilities for the fuels considered here.  相似文献   

10.
Hydrogen offers an attractive alternative to conventional fuels for use in spark ignition engines. It can be burned over a very wide range of equivalence ratios and with considerable exhaust gas recirculation. These help to minimise pumping losses through throttleless operation and oxides of nitrogen (NOx) production through reduced temperature. Full understanding of hydrogen-fuelled engine operation requires data on the laminar burning rate of hydrogen–air residuals under a wide range of conditions. However, such data are sparse. The present work addresses this need for experimental data. Spherically expanding H2–air flames were measured at a range of temperatures, pressures, and equivalence ratios and with varying concentrations of residuals of combustion. Unstretched burning velocities, ul, and Markstein lengths, Lb, were determined from stable flames. At the higher pressures, hydrodynamic and diffusional-thermal instabilities caused the flames to be cellular from inception and prohibited the derivation of values of ul and Lb. The effect of pressure on the burning rate was demonstrated to have opposing trends when comparing stoichiometric and lean mixtures. The present measurements were compared with those available in the literature, and discrepancies were attributed to neglect, in some works, the effects of stretch and instabilities. From the present measurements, the effects of pressure, temperature, and residual gas concentration on burning velocity are quantified for use in a first step towards a general correlation.  相似文献   

11.
12.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

13.
The chemistry of inhibition of laminar premixed hydrogen–oxygen flames by iron pentacarbonyl at atmospheric pressure was studied experimentally and by numerical simulation. Flame speed and chemical structure were analyzed. Flame burning velocities and inhibition effectiveness were measured and simulated for various equivalence ratios. The concentration profiles of a number of Fe-containing products of Fe(CO)5 combustion, including Fe, FeO2, FeOH, and Fe(OH)2, were first measured using probing molecular beam mass spectrometry in an atmospheric-pressure H2/O2/N2 flame. A comparison of the experimental and modeling results shows that they are in satisfactory agreement with each other, indicating that the reaction mechanism proposed previously for flame inhibition by iron pentacarbonyl is adequate for predicting the chemical structure of flames. The key recombination stages of active species catalyzed by Fe-containing species for flames of various stoichiometries can be determined by calculations of the production rates of H and O atoms and OH radicals as well as by analysis of the kinetic model.  相似文献   

14.
Absorption of CO laser radiation (v = 8→7, J = 14→15 transition at 1901.762 cm-1) by H2O has been studied in shock-heated H2/O2/Ar mixtures over the temperature range 1300–2300 K. This laser transition is nearly coincident with the v2-band 123,10←112,9 transition of H2O at 1901.760 cm-1, thereby providing a convenient and sensitive absorption-based H2O diagnostic useful for studies of combustion. The collision-broadening parameter for this H2O line, due to broadening by Ar, was determined to be 2γ (cm-1atm-1) = 0.027 (T/1300)-0.9 in the temperature range 1300–2300 K. Calculations of the H2O absorption coefficient (at 1901.762 cm-1) based on this expression for 2γ are presented for the temperature range 300–2500 K and pressure range 0.3–1 atm.  相似文献   

15.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of three butylbenzene isomers (n-butylbenzene, iso-butylbenzene and tert-butylbenzene)/air mixtures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at the initial temperature of 423 K, initial pressures of 1–10 atm, and equivalence ratios (?) of 0.7–1.5. The laminar burning velocities of butylbenzene/O2/He mixtures were also measured at 423 K, 10 atm and ? = 1.5 to provide additional experimental data under conditions that the butylbenzene/air experiments are susceptible of cellular instability. Comparison among the laminar burning velocities of butylbenzenes including both the three isomers investigated in this work and sec-butylbenzene investigated in our recent work [Combust. Flame 211 (2020) 18–31] shows remarkable fuel isomeric effects, that is, iso-butylbenzene has the slowest laminar burning velocities, followed by n-butylbenzene and tert-butylbenzene, while sec-butylbenzene has the fastest laminar burning velocities. A kinetic model for butylbenzene combustion was developed to simulate the laminar flame propagation of butylbenzenes. Sensitivity analysis was performed to reveal important reactions in laminar flame propagation of butylbenzenes, including both small species reactions and fuel-specific reactions. Kinetic effects are concluded to result in the different laminar burning velocities of four butylbenzene isomers. Small species reactions control the laminar flame propagation under lean conditions, which results in small differences of laminar burning velocities. Chain termination reactions, especially fuel-specific reactions, have important contributions to inhibit the laminar flame propagation under rich conditions. The structural features of butylbenzene isomers can significantly affect the formation of some crucial radicals such as methyl, cyclopentadienyl and benzyl radicals under rich conditions, which leads to remarkable fuel isomeric effects on their laminar burning velocities, especially at high pressures.  相似文献   

16.
Transported probability density function (TPDF) simulation with sensitivity analysis has been conducted for turbulent non-premixed CH4/H2 flames of the jet-into-hot-coflow (JHC) burner, which is a typical model to emulate moderate or intense low oxygen dilution combustion (MILD). Specifically, two cases with different levels of oxygen in the coflow stream, namely HM1 and HM3, are simulated to reveal the differences between MILD and hot-temperature combustion. The TPDF simulation well predicts the temperature and species distributions including those of OH, CO and NO for both cases with a 25-species mechanism. The reduced reaction activity in HM1 as reflected in the peak OH concentration is well correlated to the reduced oxygen in the coflow stream. The particle-level local sensitivities with respect to mixing and chemical reaction further show dramatic differences in the flame characteristics. HM1 is less sensitive to mixing and reaction parameters than HM3 due to the suppressed combustion process. Specifically, for HM1 the sensitivities to mixing and chemical reactions have comparable magnitude, indicating that the combustion progress is controlled by both mixing and reaction in MILD combustion. For HM3, there is however a change in the combustion mode: during the flame initialization, the combustion progress is more sensitive to chemical reactions, indicating that finite-rate chemistry is the controlling process during the autoignition process for flame stabilization; at further downstream where the flame has established, the combustion progress is controlled by mixing, which is characteristic of nonpremixed flames. An examination of the particles with the largest sensitivities reveals the difference in the controlling mixtures for flame stabilization, namely, the stoichiometric mixtures are important for HM1, whereas, fuel-lean mixtures are controlling for HM3. The study demonstrates the potential of TPDF simulations with sensitivity analysis to investigate the effects of finite-rate chemistry on the flame characteristics and emissions, and reveal the controlling physio-chemical processes in MILD combustion.  相似文献   

17.
This study clarifies the effects of Lewis number (Le) on laminar and turbulent expanding flames of NH3/H2/air mixtures. The laminar burning velocity (SL) and turbulent burning velocity (ST) were measured using a medium-scale, fan-stirred combustion chamber with ammonia/hydrogen molar ratio (NH3/H2) of 50/50 and 80/20 under the maximum pressures of 5 atm. The lean laminar flame with NH3/H2 = 50/50 is significantly accelerated by the diffusional–thermal instability, which dominated the trend of ST,c=0.1 with the equivalence ratio (ϕ). The lean normalized turbulent burning velocity (ST/SL) increases with the decrease of hydrogen content due to the weakening effects of SL. However, the ST/SL reaches peak with hydrogen volumetric content less than 20% due to effects made by diffusional–thermal instability than SL did. The turbulent flame of NH3/H2/air mixtures is characterized by self-similar acceleration propagation, and propagation with Le < 1 is faster. A modified correlation considering the effects of Le was proposed, as (d<r>/dt)/σSL = 0.118(ReT,flameLe−2)0.57, which was able to predict not only the self-similar propagation of NH3/H2/air but also the previous syngas/air flames. The Kobayashi correlations modified by three kinds of Le power exponents were used to clarify the effects of Le by comparing their fitting parameters and predictive powers on experimental data and literature data. Similar pre-factors, power exponents and the goodness of fit (R2) were obtained with Le ranging from 0.58 to 1.62, which suggested that the determination of Le power exponent had no significant effect on the prediction accuracy of the ST/SL trend with data of Le near unity. This might be attributed to the fact that the variation ranges of the dimensionless number that characterizes the experimental conditions is much larger than that of the Le.  相似文献   

18.
In microgravity combustion, where buoyancy is not present to accelerate the flow field and strain the flame, radiative extinction is of fundamental importance, and has implications for spacecraft fire safety. In this work, the critical point for radiative extinction is identified for normal and inverse ethylene spherical diffusion flames via atmospheric pressure experiments conducted aboard the International Space Station, as well as with a transient numerical model. The fuel is ethylene with nitrogen diluent, and the oxidizer is an oxygen/nitrogen mixture. The burner is a porous stainless-steel sphere. All experiments are conducted at constant reactant flow rate. For normal flames, the ambient oxygen mole fraction was varied from 0.2 to 0.38, burner supply fuel mole fraction from 0.13 to 1, total mass flow rate, total, from 0.6 to 12.2 mg/s, and adiabatic flame temperature, Tad, from 2000 to 2800 K. For inverse flames, the ambient fuel mole fraction was varied from 0.08 to 0.12, burner supply oxygen mole fraction from 0.4 to 0.85, total from 2.3 to 11.3 mg/s, and Tad from 2080 to 2590 K. Despite this broad range of conditions, all flames extinguish at a critical extinction temperature of 1130 K, and a fuel-based mass flux of 0.2 g/m2-s for normal flames, and an oxygen-based mass flux of 0.68 g/m2-s for inverse flames. With this information, a simple equation is developed to estimate the flame size (i.e., location of peak temperature) at extinction for any atmospheric-pressure ethylene spherical diffusion flame given only the reactant mass flow rate. Flame growth, which ultimately leads to radiative extinction if the critical extinction point is reached, is attributed to the natural development of the diffusion-limited system as it approaches steady state and the reduction in the transport properties as the flame temperature drops due to increasing flame radiation with time (radiation-induced growth.)  相似文献   

19.
The combustion behavior of nano-aluminum-water (n-Al-H2O) mixture with addition of polyacrylamide (PAM) was investigated in argon at 0.1~1.5 MPa using a constant-pressure strand burner. The burning rates of n-Al-H2O mixture were measured. The results show that PAM addition can not only help improve the burning rate of n-Al-H2O mixture, but also decrease the pressure index of burning rate. The mixture of n-Al powder and H2O cannot be ignited in argon at 0.1 MPa, but the mixture of n-Al powder and H2O with the 3 wt % PAM can be ignited, and the mixture can support the self-sustaining combustion. The burning rate is 7.64 mm/s. Moreover, the burning rate increases with increasing the pressure. In addition, the combustion process and flame image characteristics were obtained by a high-speed photography technique, and the element composition and surface morphology of the condensed combustion products were evaluated using a scanning electron microscopy combined with energy dispersive X-ray system.  相似文献   

20.
The influences of stoichiometric mixture fraction (Zst) and global strain rate (σ) on the shapes and propagation rates (Uedge) of nonpremixed edge-flames in H2N2/O2N2 mixtures were investigated using a counterflow slot-jet apparatus. Both positive and negative Uedge were observed depending on dilution level, Zst and σ. At low Zst only continuous flames were observed whereas at sufficiently high Zst, where a shift from more oxygen-deficient to more fuel-deficient conditions at the reaction zone occurs, broken structures characteristic of low Lewis number premixed flames were observed which enabled combustion under conditions where no flames could be sustained at lower Zst, even for the same dilution level. At sufficiently high σ these broken structures could transition from advancing edge-flames to isolated, stationary flames, particularly for highly-diluted mixtures. These findings were in surprisingly good agreement with theoretical predictions. Appropriate scalings of these behaviors for different mixtures based on computed 1D extinction strain rates were identified. Nonpremixed H2N2/O2N2 edge-flames have profoundly different responses to Zst than corresponding hydrocarbon edge-flames, which is shown to be due to differences in the chemistry and Lewis numbers of the two fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号