首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We design an asymmetric transmission system(ATS)with two flat acoustic metasurfaces(AMs)to yield bidirectional asymmetric acoustic focusing(BAAF).The acoustic waves could be focused on both sides of the ATS with different focal lengths and intensities.To achieve high intensity energy concentration,the accelerating acoustic beams are selected to realize the BAAF.The working bandwidth of the BAAF based on our ATS could reach ~0.4 k Hz.It is found that by adjusting the distance between two flat AMs,the focal length and intensity of the bidirectional focusing could easily be modulated.Because the distance between two flat AMs is large enough,the BAAF even could be converted into a unidirectional acoustic focusing.The proposed BAAF may find applications in non-destructive evaluation,biomedical imaging and medical diagnosis.  相似文献   

2.
Interactions between conical spray flames and sinusoidal velocity modulations due to the propagation of acoustic waves have been studied thanks to direct numerical simulations (DNS). A 2D axi-symmetric configuration has been used to capture the evolution of the pulsating laminar flames. The DNS solver has been coupled with a Lagrangian model to account for the dispersion and evaporation of the liquid fuel in the computational domain. Four main configurations, with a unitary global equivalence ratio, have been studied. Apart from a gaseous reference case, one polydispersed and two monodispersed Bunsen-type injections with various droplets density and inertia have been simulated. DNS results are in good agreement with experimental data. For significant acoustic Stokes numbers, results showed a double effect of the modulations on the flame: a direct disturbance of the flame front and a secondary impact through the local variation of the mixture fraction due to droplets preferential segregation.  相似文献   

3.
4.
Under micro-scale combustion influenced by quenching distance, high heat loss, shortened diffusion characteristic time, and flow laminarization, we clarified the most important issues for the combustor of ultra-micro gas turbines (UMGT), such as high space heating rate, low pressure loss, and premixed combustion. The stability behavior of single flames stabilized on top of micro tubes was examined using premixtures of air with hydrogen, methane, and propane to understand the basic combustion behavior of micro premixed flames. When micro tube inner diameters were smaller than 0.4 mm, all of the fuels exhibited critical equivalence ratios in fuel-rich regions, below which no flame formed, and above which the two stability limits of blow-off and extinction appeared at a certain equivalence ratio. The extinction limit for very fuel-rich premixtures was due to heat loss to the surrounding air and the tube. The extinction limit for more diluted fuel-rich premixtures was due to leakage of unburned fuel under the flame base. This clarification and the results of micro flame analysis led to a flat-flame burning method. For hydrogen, a prototype of a flat-flame ultra-micro combustor with a volume of 0.067 cm3 was made and tested. The flame stability region satisfied the optimum operation region of the UMGT with a 16 W output. The temperatures in the combustion chamber were sufficiently high, and the combustion efficiency achieved was more than 99.2%. For methane, the effects on flame stability of an upper wall in the combustion chamber were examined. The results can be explained by the heat loss and flame stretch.  相似文献   

5.
Gudra T  Opieliński KJ 《Ultrasonics》2002,40(1-8):457-463
In different solutions of ultrasonic transducers radiating acoustic energy into the air there occurs the problem of the proper selection of the acoustic impedance of one or more matching layers. The goal of this work was a computer analysis of the influence of acoustic impedance on the transfer function of piezoceramic transducers equipped with matching layers. Cases of resonance and non-resonance matching impedance in relation to the transfer function and the energy transmission coefficient for solid state-air systems were analysed. With stable thickness of matching layers the required shape of the transfer function can be obtained through proper choice of acoustic impedance were built (e.g. maximal flat function). The proper choice of acoustic impedance requires an elaboration of precise methods of synthesis of matching systems. Using the known matching criteria (Chebyshev's, DeSilets', Souquet's), the transfer function characteristics of transducers equipped with one, two, and three matching layers as well as the optimisation methods of the energy transmission coefficient were presented. The influence of the backside load of the transducer on the shape of transfer function was also analysed. The calculation results of this function for different loads of the transducer backside without and with the different matching layers were presented. The proper load selection allows us to obtain the desired shape of the transfer function, which determines the pulse shape generated by the transducer.  相似文献   

6.
Depletion interactions between two spherocylinders   总被引:1,自引:0,他引:1  
The depletion interactions between two spherocylinders as functions of their separation and their relative orientation, induced by a small hard-sphere fluid, are calculated by Monte Carlo simulations using the acceptance ratio method (ARM). The torque on the spherocylinders is determined from the resulting potential. The calculation shows that the ARM is an effective way to obtain depletion interactions of spherocylinders. The depletion interaction under the Asakura-Oosawa (also excluded-volume) approximation is also calculated numerically.  相似文献   

7.
Head-related transfer functions(HRTFs) are the core of virtual auditory display and relevant applications. However,a standard method for HRTF measurements has not been established. This work examines the influence of different HRTF measurement methodologies on auditory perception. First, the diffusion-field equalization was proposed and applied to HRTFs of a single dummy head(KEMAR) from five different datasets. Then,the spectral deviations among the HRTFs were calculated and analyzed. Finally, a series of subjective listening experiments(including localization and discrimination experiments) were conducted. Results indicate the diffusion-field equalization is an effective pre-processing method which reduces the difference in HRTF magnitude spectra caused by different measurement methodologies. Moreover,the HRTFs from different measurement methodologies have similar localization performance below 12 kHz, whereas the inter-dataset differences in timbre are distinct leading to audible discrimination.  相似文献   

8.
We experimentally study the effect of rotational asymmetries in the flame response distribution on the thermoacoustic oscillations of four turbulent lean-premixed combustors coupled in a ring network. The asymmetries are created via different combinations of high-swirl (HS) and low-swirl (LS) nozzles. By analyzing the inter-combustor acoustic interactions in terms of discrete thermoacoustic modes, we find a variety of modal patterns: (i) global alternating push–pull modes emerge for most pair-wise asymmetric nozzle combinations, (ii) 2-can push–pull modes emerge for an alternating 2-fold symmetric nozzle combination, and (iii) strong mode localization and global push–push modes emerge when the HS nozzles outnumber the LS nozzles. Using a complex systems framework, we reinterpret these modal patterns as collective states, such as a weak breathing chimera, a weak anti-phase chimera, and in-phase/anti-phase synchronization. This study shows that changing the flame response distribution of a multi-combustor system, via changes in the nozzle swirl distribution, can induce a variety of modal patterns and collective states. This sets the stage for the potential use of rotational asymmetries in the passive control of thermoacoustic modes in can-annular combustion systems.  相似文献   

9.
The interaction between a laminar flame and a vortex is an important study for understanding the fundamentals of turbulent combustion. In the past, however, flame-vortex interactions have been investigated only for high-temperature flames. In this study, the impact of a vortex on a premixed double flame, which consists of a coupled cool flame and a hot flame, is examined experimentally and computationally using dimethyl ether/oxygen/ozone mixtures. The double flame is first shown to occur near the extinction limit of the hot flame. The differences between steady-state cool flames, double flames, and hot flames are explored in a one-dimensional counterflow configuration. The transient interactions between double flames and impinging vortices are then investigated experimentally using a micro-jet and numerically in two-dimensional transient modeling. It is seen that the vortex can extinguish the near-limit hot flame locally, resulting in a lone cool flame. At higher vortex intensities, the cool flame may also be extinguished after the extinction of the hot flame. It is found that there can be three different transient flame structures coexisting at the same time: an extinguished flame hole, a cool flame, and a double flame. Moreover, flame curvature is shown to play an important role in determining whether the vortex weakens or strengthens the cool flame and double flame.  相似文献   

10.
The Large Eddy Simulation/System Identification (LES/SI) approach is a general and efficient numerical method for deducing a Flame Transfer Function (FTF) from the LES of turbulent reacting flow. The method may be summarised as follows: a simulated flame is forced with a broadband excitation signal. The resulting fluctuations of the reference velocity and of the global heat release rate are post-processed via SI techniques in order to estimate a low-order model of the flame dynamics. The FTF is readily deduced from the low-order model. The SI method most frequently applied in aero- and thermo-acoustics has been Wiener–Hopf Inversion (WHI). This method is known to yield biased estimates in situations with feedback, thus it was assumed that non-reflective boundary conditions are required to generate accurate results with the LES/SI approach. Recent research has shown that the FTF is part of the so-called Intrinsic ThermoAcoustic (ITA) feedback loop. Hence, identifying an FTF from a compressible LES is always a closed-loop problem, and consequently one should expect that the WHI would yield biased results. However, several studies proved that WHI results compare favourably with validation data. To resolve this apparent contradiction, a variety of identification methods are compared against each other, including models designed for closed-loop identification. In agreement with theory, we show that the estimate given by WHI does not converge to the actual FTF. Fortunately, the error made is small if excitation amplitudes can be set such that the signal-to-noise ratio is large, but not large enough to trigger nonlinear flame dynamics. Furthermore, we conclude that non-reflective boundary conditions are not essentially necessary to apply the LES/SI approach.  相似文献   

11.
程果  徐荣武  何琳  孙红灵 《声学学报》2014,39(5):577-581
对不规则的混响声场情况的互易测量方法进行了理论研究,对相关测量误差提出了修正方法。通过测量结果的空间平均和混响环境对声能密度影响的评估,修正了声源体积速度的计算值,并在水中进行了试验验证。经修正后的互易测量结果与正向实测结果基本一致。表明混响声场不影响互易原理有效性的成立,但影响了声源体积速度的计算,进而影响了应用互易原理对传递函数的测量。提出的修正方法在不规则的混响声场情况下简单有效,结论为今后基于互易原理的工程应用提供了参考和依据。   相似文献   

12.
The reciprocity measurement theory in anomalous reverberant sound fields was investigated.An improved method Was proposed due to the interrelated errors.The source volume velocity Was corrected by spatial average of measurement results and evaluation of the reverberant sound field influence on acoustic energy density.The result was validated in underwater experiment,corrected reciprocity measurement results were almost the same as direct measurement results.It indicates that reverberant sound field does not affect the validitv of the principle,but influences the obtainment of source volume velocity,then influences the measurement of transfer functions with the principle.The proposed method is simple and effective in anomalous reverberant sound fields.The study mav be valuable for the applications which are based on the principle.  相似文献   

13.
钟小丽  徐秀 《声学学报》2018,43(1):83-90
头相关传输函数(HRTF)是虚拟听觉重放的核心·目前,HRTF的实验室测量缺乏统一的规范。本文研究了不同测量对HRTF的听觉影响。首先提出了扩散场均衡的预处理方法,并对来自5个不同数据库的KEMAR假人的HRTF数据进行了扩散场均衡;然后,采用谱差异评估了不同数据库HRTF测量的频谱差异;最后,采用HRTF合成的虚拟声信号开展了一系列的主观听音实验,包括定位实验和区分实验·结果表明,扩散场均衡是一种有效的HRTF预处理方法,可以减小不同测量对HRTF频谱的影响;不同测量基本上不影响HRTF在12 kHz以下的定位效果,但对音色的影响较大,从而导致听觉上的可区分.  相似文献   

14.
矩形波导中宽带非对称声传输   总被引:1,自引:0,他引:1       下载免费PDF全文
陈乐乐  胡洁 《声学学报》2020,45(5):770-776
目前已有的非对称性声传输模型大部分局限于二维模式,无法直接应用于三维实际系统,针对这一问题,文中研究了通过内置非对称几何结构来实现声单向传输的三维管道模型。该几何结构体内引入天然材料——氙气,利用氙气与空气两种天然气体折射率的差异以及结构的不对称,实现声波在管道中的非对称传输,即当声波正向入射时,可通过管道内结构到达另一侧;而当反向入射时,声波无法通过内置的非对称结构。理论计算结果和仿真结果表明声波在三维矩形波导管中的非对称声传输效果和结构的厚度相关:当结构厚度较薄时,可在较宽频带范围内实现声波的非对称传输。此外,该矩形波导设计具有结构简单、透明超轻等特点,为设计新型声波非对称传输器件提供了相应的理论参考。  相似文献   

15.
A particularly simple chaotic nonequilibrium open system with two Cartesian degrees of freedom, characterized by two distinct temperatures T(x) and T(y), is introduced. The two temperatures are maintained by Nose-Hoover canonical-ensemble thermostats. Both the equilibrium (no net heat transfer) and nonequilibrium (dissipative) Lyapunov spectra are characterized for this simple system.  相似文献   

16.
We present a method to investigate the influences of the thermal fluctuations on the nanometer-sized particle in pickup manipulation by an atomic force microscope (AFM). We show that thermal fluctuations can play an important and even major role in the interaction between particles at room temperature. Moreover, thermal fluctuations always have an opposing effect on the particle interactions. The deterministic directional motion of a particle governed by the interfacial properties of the nanoparticles becomes non-deterministic, with a reduction of the adhesion probability up to 44% under different strength of the thermal fluctuations.  相似文献   

17.
孙宏祥  张淑仪  袁寿其 《中国物理 B》2016,25(12):124313-124313
The controls of the pass-bands in an asymmetric acoustic transmission system are investigated numerically and experimentally, and the system consists of a periodical rectangular grating and two uniform brass plates in water. We reveal that the pass-band of the asymmetric acoustic transmission is closely related to the grating period, but is affected slightly by the brass plate thickness. Moreover, the transmittance can be improved by adjusting the grating period and other structural parameters simultaneously. The control method of the system has the advantages of wider frequency range and simple operation, which has great potential applications in ultrasonic devices.  相似文献   

18.
19.
Understanding the distinguishing physical properties of multi-element lean-premixed high hydrogen content flames is expected to be integral to the development of carbon-neutral, and ultimately carbon-free, gas turbine combustion systems. Despite their fundamental importance, the thermoacoustic and emission-related characteristics of such small-scale flame ensembles are not thoroughly understood, particularly for the full range of 0 to 100% hydrogen content blended with methane fuel. Here we investigate the structure and collective behavior of a multi-element lean-premixed hydrogen/methane/air flame ensemble using measurements of nitrogen oxides emissions and self-excited instability, combined with OH* and OH PLIF flame visualizations. Our results indicate that the system's responses can be classified into several distinctive stages according to their static and dynamic stability, including flame blowoff and thermoacoustically stable regions under relatively low hydrogen concentration conditions, low-frequency self-excited instabilities in intermediate hydrogen concentration, and triggering of intense pressure perturbations at about 1.7 kHz under high- or pure hydrogen combustion conditions. While the low-frequency combustion dynamics are dominated by axisymmetric translational movements of parallel flame fronts, the higher frequency response originates from significant lateral modulations accompanied by small-scale vortical rollup and flame surface annihilation due to front merging and pinch-off. Longitudinal-to-transverse dynamic transition is observed to play a mechanistic role in kinematically accommodating higher-frequency heat release rate fluctuations, and this newly identified mechanism suggests the possibility of high-frequency transverse modes, if such lateral motions are strong enough to induce inter-element flame interactions. In contrast to the substantial differences in thermoacoustic properties for different fuel compositions, the total nitrogen oxides emissions are found to depend primarily on adiabatic flame temperature; the influence of fuel composition is limited to approximately 20% under the inlet conditions considered.  相似文献   

20.
In highly fluctuating flows, it happens that high values of the strain-rate do not induce extinction of the flame front. Unsteady effects minimize the flame response to rapidly varying strain fields. In the present study, the effects of time-dependent flows on non-premixed flames are investigated during flame/vortex interactions. Gaseous flames and spray flames in the external sheath combustion regime are considered. To analyse the flame/vortex interaction process, the velocity field and the flame geometry are simultaneously determined using particle imaging velocimetry and laser-induced fluorescence of the CH radical. The influence of vortex flows on the extinction limits for different vortex parameters and for different gaseous and two-phase flames is examined. If the external perturbation is applied over an extended period of time, the extinction strain-rate is that corresponding to the steady-state flame, and this critical value mainly depends on the fuel and oxidizer compositions and the injection temperature. If the external perturbation is applied during a short period of time, extinction occurs at strain-rates above the steady-state extinction strain-rate. This deviation appears for flow fluctuation timescales below steady flame diffusion timescales. This behaviour is induced by diffusive processes, limiting the ability of the flame to respond to highly fluctuating flows. With respect to unsteady effects, the spray flames investigated in this article behave essentially like gaseous flames, because evaporation takes place in a thin layer before the flame front. Extinction limits are only slightly modified by the spray, controlling process being the competition between aerodynamic and diffusive timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号