首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Metal-free catalysts have attracted more attention due to their highly active in catalytic oxidation reactions. The electronic structure and catalytic property of BC3 sheet are investigated by using first-principles calculations. It is found that the BC3 sheet as the active surface can effectively regulate the adsorptive stability of reactive gases. Besides, the possible reaction processes for CO oxidation on the BC3 sheet are comparably analysed through different reaction mechanisms, which include the Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and termolecular Eley–Rideal (TER). In the CO oxidation reactions, the decomposition of O2 molecule as the starting state (0.40?eV) is an energetically more favourable process than those of other processes, the Eley–Rideal (ER) reactions (2Oads+2CO→CO2) are more prone to take place with lower energy barriers (3 sheet. These results provide an important guidance on exploring the highly efficiency metal-free catalyst for CO oxidation.  相似文献   

2.
Cu-based oxides oxygen carriers and catalysts are found to exhibit attractive activity for CO oxidation, but the dispute with respect to the reaction mechanism of CO and O2 on the CuO surface still remains. This work reports the kinetic study of CO oxidation on the CuO (111) surface by considering the adsorption, reaction and desorption processes based on density functional theory calculations with dispersion correction (DFT-D). The Eley–Rideal (ER) CO oxidation mechanism was found to be more feasible than the Mars-van-Krevelen (MvK) and Langmuir–Hinshelwood (LH) mechanisms, which is quite different from previous knowledge. The energy barrier of ER, LH, and MvK mechanisms are 0.557, 0.965, and 0.999 eV respectively at 0 K. The energy barrier of CO reaction with the adsorbed O species on the surface is as low as 0.106 eV, which is much more active in reacting with CO molecules than the lattice O of CuO (111) surface (0.999 eV). A comparison with the catalytic activity of the perfect Cu2O (111) surface shows that the ER mechanism dictates both the perfect Cu2O (111) and the CuO (111) surface activity for CO oxidation. The activity of the perfect Cu2O (111) surface is higher than that of the perfect CuO (111) surface at elevated temperatures. A micro-kinetic model of CO oxidation on the perfect CuO (111) surface is established by providing the rate constants of elementary reaction steps in the Arrhenius form, which could be helpful for the modeling work of CO catalytic oxidation.  相似文献   

3.
By density functional theory (DFT) calculations, it is found that the single-atom Fe anchored three Si modified defective graphene (3Si-graphene-Fe) exhibits the high stability, and this system is semiconducting property and has non-magnetic moment. Besides the most stable configurations, electronic structures and magnetic properties of adsorbed species (O2, CO, 2CO and CO/O2) on 3Si-graphene-Fe systems are comparably discussed. The adsorption of O2 is more stable than that of CO molecule and the coadsorption of 2CO and CO/O2 has the larger adsorption energy than that of the isolated one. The adsorbed O2, CO and CO/O2 can induce the change in magnetic properties of 3Si-graphene-Fe system, and the coadsorbed CO/O2 on system exhibits the metallic property. Among the reaction mechanisms, the CO oxidation reactions through Eley–Rideal (ER) reactions have lower energy barriers (<0.5?eV) than those of the Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms, indicating that the ER reaction as starting step is an energetically favourable process. These results provide an important guidance on validating the catalytic activity of single atom on graphene-based materials.  相似文献   

4.
ABSTRACT

The stable configurations, electronic structures and catalytic activities of single-atom metal catalyst anchored silicon-doped graphene sheets (3Si-graphene-M, M?=?Ni and Pd) are investigated by using density functional theory calculations. Firstly, the adsorption stability and electronic property of different gas reactants (O2, CO, 2CO, CO/O2) on 3Si-graphene-M substrates are comparably analysed. It is found that the coadsorption of O2/CO or 2CO molecules is more stable than that of the isolated O2 or CO molecule. Meanwhile, the adsorbed species on 3Si-graphene-Ni sheet are more stable than those on the 3Si-graphene-Pd sheet. Secondly, the possible CO oxidation reactions on the 3Si-graphene-M are investigated through Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms. Compared with the LH and TER mechanisms, the interaction between 2CO and O2 molecules (O2?+?CO → CO3, CO3?+?CO → 2CO2) through ER reactions (< 0.2?eV) are an energetically more favourable. These results provide important reference for understanding the catalytic mechanism for CO oxidation on graphene-based catalyst.  相似文献   

5.
The geometry, electronic structure, and catalytic properties for CO oxidation of Pt atom supported on pri-graphene (PG), Haeckelite (H), and Stone–Wales-defect-graphene are investigated by density functional theory (DFT) calculations. In contrast to a Pt atom on PG, defective graphene, especially the Haeckelite, strongly stabilises the Pt atom and makes it more positive and thus the CO poisoning. At the same time the catalytic activities are as high as the pristine one. Langmuir–Hinshelwood mechanisms are favoured as the starting state and are followed by the Eley–Rideal reaction. The results indicate the benefit of Haeckelite as a substrate for the Pt atom and validate the reactivity of catalysts on the atomic scale with low cost and high activity.  相似文献   

6.
Hydrogen cyanide (HCN) is well-accepted as a main nitrogen-containing precursor from fuel nitrogen to nitrogen oxides. When using coal as fuel with a CuO-based oxygen carrier in chemical looping combustion (CLC), complex heterogeneous reactions exist among the system of HCN, O2, NO, H2O, and CuO particles. This work performs density functional theory (DFT) calculations to systematically probe the microscopic HCN heterogeneous reactions over the CuO particle surface. The results indicate that HCN is chemisorbed on the CuO surface, and the third dissociation step within the consecutive three-step HCN dissociations (HCN*→CN*→NCO*→N*) is the rate-determining step. Namely, the CN*/NCO* radicals can be deemed as an indicator of the performance of HCN removal due to their quite higher dissociation energies. With the existence of O2, H2O, and NO, the reaction mechanism of HCN conversion becomes extremely complex. Both DFT calculations and kinetic analyses determine that O2, NO, and H2O all significantly accelerate the consumption of CN*/NCO* radicals to produce various N-containing species (NOx or NH3) to different extents. Finally, a skeletal reaction network in a system of O2/NO/H2O/HCN is concluded, which clearly elucidates that CuO exhibits excellent catalytic activity toward HCN removal.  相似文献   

7.
The oxidation of isobutane at high density of reagents in a mixture of i-C4H10/O2/H2O and i-C4H10/O2/CO2 with oxygen deficiency (a molar ratio [O2]0/[i-C4H10]0 = 3.5–5.8) has been studied for the first time. The experiments were carried out in a tubular reactor under uniform heating (1 K/min) to 590 K. Data on the kinetics, auto-ignition temperature, and the products of isobutane conversion have been obtained. The auto-ignition was found to be a two-stage process and begin at a temperature of 510–522 K. The heat capacity of the reaction mixture suppressed the autoacceleration of the oxidation. Mass spectrometric analysis of the reactants revealed a difference in the mechanisms of isobutane conversion in water vapor and carbon dioxide. In water vapor, the oxidation is dominant and is realized with the participation of vibrationally excited O*2 molecules, which appear mainly from resonant exchange with H2O* molecules. In the CO2 medium, the oxidation proceeds against the background of intense isobutane dissociation, initiated by the vibrational pumping of i-C4H10 molecules in their resonant excitation by CO*2 molecules.  相似文献   

8.
The production of hydrogen via steam reforming of ethanol (SRE) is favourable for the use of hydrogen as an alternative fuel. Co–Mo6S8 possesses high activity and stability for SRE to sustainably produce hydrogen. The competition among reaction pathways related to C–H, O–H, C–C, C–O cleavage and H2 formation was studied. The adsorption and reaction of related intermediates in the ESR reaction pathway are described. The results indicated that the most feasible route for the decomposition of ethanol catalysed by Co–Mo6S8 is CH3CH2OH*→CH3CH2O*→CH3CHO*→CH2CHO*→CHCHO*→CHCO*→CH*+CO*. The CH* can be decomposed into C*+H*, and CO* can be oxidised via the redox mechanism of the water gas shift (WGS) reaction. Thus the final products are CO2 and H2. The present result may help people to design an SRE catalyst, which has the ability to break C–C to form CO and H2, then CO react with H2O in the WGS reaction generating CO2 and H2.  相似文献   

9.
《Current Applied Physics》2018,18(6):626-632
The selective catalytic reduction (SCR) system for NOX removal in coal-fired power plants has a promoting effect on the oxidation and removal of elemental mercury. In this study, basic mechanism of mercury oxidation by V2O5-based SCR catalyst is investigated via density functional theory method and the periodic slab models. Calculations are conducted to determine the adsorption energies and geometries of Hg0, HgCl, HgCl2 and HCl on V2O5(001) surface, and to reveal the energy profile of oxidation reaction and the structures of relative transition states and intermediates. The results indicate that HCl can significantly promote Hg0 oxidation on V2O5(001) surface, by forming an intermediate HgCl-surface which is important for Hg0 oxidation. The Hg0 oxidation goes through Hg0 → HgCl → HgCl2, and the two stages of the reaction follow Eley–Rideal mechanism and Langmuir-Hinshelwood mechanism, respectively. The formation of HgCl2 is the rate-determining step due to its high energy barrier. Three detailed reaction pathways are obtained, and the related energy profiles and structures are analyzed in detail. The Hg0 oxidation reaction can take place through all three pathways even if differences exist in each other, while pathways I and II have relatively low energy barriers.  相似文献   

10.
L. Álvarez-Falcón  S.J. Alas  L. Vicente 《Physica A》2011,390(23-24):4174-4183
The catalytic reduction of nitric oxide by hydrogen over a Pt surface is studied using a dynamic Monte Carlo (MC) method on a square lattice under low pressure conditions. Using a Langmuir–Hinshelwood reaction mechanism, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on the NO dissociation rate, the limiting step in the whole reaction, is inhibited by co-adsorbed NO and H2 molecules and is enhanced both by the presence of empty sites and adsorbed N atoms at nearest neighbors. In these simulations, several experimental parameter values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied while varying the temperature over the 300–550 K range. The model reproduces well-observed TPD and TPR experimental results. For the whole NO+H2 reaction, the phenomena of “surface explosion” is observed and can be explained as the result of the abrupt production of N2 due to both the autocatalytic NO decomposition favored by the presence of vacant sites and the development of inhomogeneous fluctuations. MA simulations also allow a visualization of the spatial development of the surface explosion as heating proceeds.  相似文献   

11.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

12.
CO and O2 co-adsorption and the catalytic oxidation of CO on a Pt(1 1 0) surface under various pressures of CO and O2 (up to 250 mTorr) are studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and mass spectrometry. There is no surface oxide formation on Pt under our reaction conditions. CO oxidation in this pressure (<500 mTorr), O2 to CO ratio (<10), and temperature (150 °C) regime is consistent with the Langmuir-Hinshelwood reaction mechanism. Our findings provide in-situ surface chemical composition data of the catalytic oxidation of CO on Pt(1 1 0) at total pressures below 1 Torr.  相似文献   

13.
Density Functional Theory (DFT) was utilized to study the hydrolysis mechanism and kinetic analysis of carbonyl sulfide (COS). The structures of reactants (R), transition states (TS), intermediates (IM) and products (P) were analyzed and a conclusion reached that hydrolysis mechanism of COS occurs in two paths with One path as a C=S path and the other as a C=O path and all featuring potential for forming H2S and CO2. Function change analysis of COS hydrolysis indicated the rate-determining step of COS hydrolysis was the first elementary reaction as OH and H in H2O attacked C=O and S=O in COS, respectively, with the two paths parallel and competitive and the C=S path more reactionary than the C=O path. Influence on each elementary reaction was also not consistent with reaction temperature increase. The study also included further investigation of the COS catalytic hydrolysis.  相似文献   

14.
The composition of volatile and solid products of oxidation of hydrogen sulfide and stainless steel in gas mixtures containing H2S, O2, H2O, and CO2 has been determined using mass spectrometry, x-ray diffraction analysis, and scanning electron microscopy. It has been shown that holding an H2S–O2 mixture at 301 K results in prevailing formation of elemental sulfur and iron sulfides in the form of porous hygroscopic crust on the reactor wall surface. Formation of gas-phase sulfur causes self-acceleration of the oxidation of hydrogen sulfide; the resulting water triggers corrosion of the reactor wall. Heating of the resulting sulfur-sulfide crust in O2 medium is accompanied by formation of SO2 and heat release at T > 508 K. After heating of the H2S–CO2 mixture to 615 K, H2 and COS were found in the volatile reactants; no noticeable corrosion of the reactor wall has been detected. It has been established that addition of O2 to the H2S–CO2 mixture and its heating to 673 K leads to formation of ferrous sulfates. The mechanisms of the observed processes are discussed.  相似文献   

15.
Raman spectroscopic technique has been used to characterize a Ru/TiO2 catalyst and to follow in situ their structural changes during the CO selective methanation reaction (S‐MET). For a better comprehension of the catalytic mechanism, the in‐situ Raman study of the catalysts activation (reduction) process, the isolated CO and CO2 methanation reactions and the effect of the composition of the reactive stream (H2O and CO2 presence) have been carried out. Raman spectroscopy evidences that the catalyst is composed by islands of TiO2–RuO2 solid solutions, constituting Ru–TiO2 interphases in the form of RuxTi1 − xO2 rutile type solid solutions. The activation procedure with H2 at 300 °C promotes the reduction of the RuO2–TiO2 islands generating Ruo–Ti3+ centers. The spectroscopic changes are in agreement with the strong increase in chemical reactivity as increasing the carbonaceous intermediates observed. The selective methanation of CO proceeds after their adsorption on these Ruo–Ti3+ active centers and subsequent C―O dissociation throughout the formation of CHx/CnHx/CnHxO/CHx―CO species. These intermediates are transformed into CH4 by a combination of hydrogenation reactions. The formation of carbonaceous species during the methanation of CO and CO2 suggests that the CO presence is required to promote the CO2 methanation. Similar carbonaceous species are detected when the selective CO methanation is carried out with water in the stream. However, the activation of the catalysts occurs at much lower temperatures, and the carbon oxidation is favored by the oxidative effect of water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
《Surface science》1989,219(3):L601-L606
In situ and real-time optical absorption measurements of supported copper particles (4–10 nm) at wavelengths of 300 to 800 nm are carried out under H2, CO, and O2 respectively as ambient gases in the temperature range of 300 to 673 K. We observe a reversible change in the optical spectra caused by oxidation of copper and reduction of copper oxide. The data strongly indicate that the oxidation of small copper particles is composed of a fast process of Cu to CuOx (x ≈ 0.67) and a slow process of CuOx (x≈ 0.67) to CuO.  相似文献   

17.
Porous flowerlike CeO2 microspheres were synthesized via a novel hydrothermal method and were used as supports for the oxidation of CO. After loaded with Au or CuO, it exhibited an excellent low-temperature catalytic activity toward CO oxidation reaction. Especially, for the Au-loaded flowerlike CeO2 microsphere catalyst, CO gas started its conversion into CO2 above 80% at room temperature. The possible reasons for the superior catalytic activity of flowerlike CeO2 microsphere catalysts were discussed.  相似文献   

18.
《Physica A》2006,365(2):307-316
The formation of water from hydrogen–oxygen reaction on a metal surface is of immense importance due to the technological reasons. This reaction has been studied via a thermal mechanism on a Pt single crystal surface where the two molecules, H2 and O2, have been adsorbed dissociatively in atomic form. The reaction takes place between the adsorbed atoms through an intermediate OH radical. We have studied this reaction via a thermal (Langmuir–Hinshelwood mechanism) as well as a non-thermal mechanism (precursor mechanism) by the Monte Carlo computer simulations. In this study, we have applied a novel approach based upon the experimental observations that the dissociated oxygen atoms do not sit next to one another on a catalytic surface. Some interesting results like the shifting of the phase transition points, the broadening of the reaction window width and the elimination of the second-order phase transition in the non-thermal reaction mechanism are obtained by considering various possibilities of the reaction scheme. The phase diagrams as well as the snapshots of the surface covered with the reacting species are presented.  相似文献   

19.
用周期性密度泛函方法对H2S在氧化石墨烯(GO)上的吸附和分解进行了理论计算, 讨论了H2S和GO上的羟基和环氧基团的反应过程.结果表明,反应过程是通过H2S或-SH上的H转移使得GO的环氧基开环和羟基氢化,当GO相反面存在羟基时有助于环氧基团的开环和羟基氢化反应.H2S在GO上吸附和分解到S原子的反应机理中引入了相应的中间态,计算两次脱氢过程能垒分别为3.2和10.4 kcal/mol,第二个H原子的转移是GO还原过程的速率决定步骤.结果还表明GO上的羟基和环氧基团有助于加强S原子和石墨烯的结合.  相似文献   

20.
The isomers of the carbonyl sulfide (OCS) molecule are investigated in detail at CCSD(T)/cc-pVTZ//MP2/6-311++G(2d,2p) level of theory. One cyclic isomer was identified along with three different linear minima of the OCS molecule. Three interconversion transition states were also located between cyclic and linear forms of OCS. Among these four isomers, the singlet potential energy surface (PES) for the molecule–molecule reaction between the three most energetically favoured isomers of OCS and H2O has been explored theoretically at the CCSD(T)/cc-pVTZ//MP2/6-311++G(2d,2p) level. This singlet PES comprises of three paths. Path 1 is the reaction of linear OCS molecule with water producing the major product P1 (CO2?+?H2S), minor product P2 (S?+?HCOOH) and two isomers via 14 minima and 15 transition states. The Path 2 is an isomerization process in which cyclic isomer of OCS reacts with water molecule via another initial barrierless aduct producing five isomers of the OCS–H2O system through five interconversion transition states. The reaction of linear COS isomer with water is shown in Path 3. This path produces the radicals SH and COOH from another COS–H2O complex via a transition state. Among these three products, the product P1 is energetically most favoured. The overall exothermicity of the product channels for the formation of major product P1 on PES is calculated to be about 10.60?kcal/mol possessing initial high entrance barriers of 45.48 and 55.47?kcal/mol in two possible pathways. As the process is favoured thermodynamically but not kinetically, the reaction is expected to be very slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号