首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
从实验上证实Hg0.695Cd0.305Te 光电二极管空间电荷区中存在双光子吸收的Franz-Keldysh效应.利用一个皮秒Nd:YAG激光器抽运的光学参量产生器和差频产生器作为激发光源,测量了入射波长为λ0=7.92μm的脉冲激光所激发的光响应随入射光强的变化关系.脉冲光响应峰值强度随入射光强的增大呈现二次幂函数增强趋势.采用等效RC电路模型将脉冲光伏信号峰值与入射光强相关联,得到空间电荷区中强电场下单光束 关键词: Franz-Keldysh效应 碲镉汞 双光子吸收 脉冲光伏信号  相似文献   

2.
We report on new schemes for pump-probe photo-thermal lens methods aimed for measuring the two-photon absorption coefficient of a given material. We show that by focusing a probe beam in the presence of a nearly collimated pump beam, we create a thermal lens which yields measurement of the two-photon absorption coefficient of nitrobenzene of (3.9 ± 0.3) 10−10 cm/W at 532 nm. We also show that when the pump field is focused in the presence of a nearly collimated probe beam the width of the z-scan signature of a two-photon absorption process is nearly one order of magnitude smaller than that of a one-photon process. We show experimental evidence of the effect obtained for nitrobenzene.  相似文献   

3.
从实验上证实Hg0.695Cd0.305Te 光电二极管空间电荷区中存在双光子吸收的Franz-Keldysh效应.利用一个皮秒Nd:YAG激光器抽运的光学参量产生器和差频产生器作为激发光源,测量了入射波长为λ0=7.92μm的脉冲激光所激发的光响应随入射光强的变化关系.脉冲光响应峰值强度随入射光强的增大呈现二次幂函数增强趋势.采用等效RC电路模型将脉冲光伏信号峰值与入射光强相关联,得到空间电荷区中强电场下单光束  相似文献   

4.
Liquid-spray flames are encountered in many practical combustion devices such as gasoline direct injection and diesel engines, gas turbine combustors as well as industrial furnaces. As opposed to gaseous fuels, additional phase-change steps present in liquid sprays not only complicate the overall combustion process, but also make in-situ, laser-based combustion diagnostics challenging. In particular, the formation of carbon monoxide (CO) due to incomplete fuel-air mixing and partial oxidation becomes a major challenge. In this study, we apply femtosecond, two-photon laser-induced fluorescence (fs-TPLIF) to measure CO concentration in piloted liquid-spray flames, taking into account possible signal interferences in the 230.1-nm, B1Σ+←X1Σ+ excitation scheme. A modified, flat-flame McKenna burner fitted with a direct-injection high-efficiency nebulizer (DIHEN) was used to produce piloted liquid-methanol spray flames. Although single-laser-shot OH-PLIF images show the presence of strong turbulent interactions in the core region, shot-averaged OH-PLIF images indicate that near the nozzle-exit region, the primary reaction takes place in an annular region around the droplet cloud, in general. A detailed spectroscopic study reveals that the signal interference at 460?nm originating from the second-order scattering of the excitation laser, which becomes approximately an order of magnitude stronger than CO fluorescence spectral lines near the nozzle exit region. The specific spectral filtering scheme introduced in our recent work is proved to be capable of suppressing interferences primarily originating from C2 Swan-band emissions. Two-dimensional CO maps along with OH-PLIF flame structure data provide key insights into the CO formation in piloted liquid-spray flames, while providing critical validation datasets for advanced computational models.  相似文献   

5.
Two-photon absorption fluorescence is employed within a microfluidic device to create a three-dimensional chemical concentration map for mixing uniformity characterization. This multiphoton technique images fluorescence intensity directly and provides a simple, rapid, and readily employed route to composition characterization within microfluidic systems.  相似文献   

6.
A computational method is described in order to correct OH LIF temperature measurements for absorption of laser energy and trapping of fluorescence. Calculations are performed in a large range of flame conditions and can be used as a correction data base both in case of (0-0) and (1?0) excitations. Comparison of corrected temperatures profiles obtained in a 40 Torr methanol/air flame, for both kinds of Laser-Induced Fluorescence (LIF) excitations shows a very good agreement. This method is applied to measure the temperature profile of a methanol flame perturbed by a sampling probe. The LIF collection volume is located at the actual probe sampled volume using an experimental procedure already described. Spatial resolution and sensitivity of temperature measurements are sufficiently efficient to highlight, for the first time by LIF, an indubitable cooling effect due to the probe presence that induces important OH profile change. According to flame chemical modelling, it is shown that both effects are strongly correlated.  相似文献   

7.
With aQ-switched Ruby-laser (h v L =1.785 eV), the two-photon absorption (TPA) coefficient of various semiconductors is determined. The gap energy,E g , of these substances is lying in the range ofh v L <E g <2hv L . For all measurements the same experimental setup is used, and for the evolution of the data the real, time-dependent intensity of the laser pulse is taken. Thus, the existing discrepancies between the TPA-coefficients as determined by various authors with different experimental techniques can be settled.  相似文献   

8.
The conditions for homodyne detection of squeezing are related to the density matrix of the squeezed light. It is shown that coherent light subjected to two-photon absorption for an appropriate length of time develops a small amount of squeezing.  相似文献   

9.
Femtosecond (fs)-duration laser pulses are well suited for two-photon laser-induced-fluorescence (TPLIF) imaging of key atomic species such as H, N, and O in gas-phase reacting flows. Ultrashort pulses enable efficient nonlinear excitation, while reducing interfering photochemical processes. Furthermore, amplified fs lasers enable high-repetition-rate imaging (typically 1–10 kHz) for capturing the dynamics of turbulent flow fields. However, two-dimensional (2D), single-laser-shot fs-TPLIF imaging of the above species is challenging in most practical flow fields because of the limited ultraviolet pulse energy available in commercial optical parametric amplifier (OPA)-based tunable laser sources. In this work, we report the development of an efficient, fs frequency-quadrupling unit [i.e., fourth-harmonic generator (FHG)] with overall conversion efficiency more than six times greater than that of commercial OPA-based systems. The development, characterization, and application of the fs-FHG system for 2D imaging of H atoms in flames are described in detail. The potential application of the same laser system for 2D imaging of N and O atoms is also discussed.  相似文献   

10.
Absolute two-photon absorption coefficients have been measured in ZnSe and CdTe single crystals by means of the two-channel normalization technique. Comparison between TPA experimental and theoretical values shows that the TPA, for 2h?ω ? Eg, is oddly influenced both by non-parabolicity and degeneracy of the energy bands.  相似文献   

11.
The switching speed of conventional silicon-based optical switching devices based on plasma dispersion effect is limited by the lifetime of free carriers which introduce either phase or absorption changes. Here we report an all-optical logic NOR gate which does not rely on free carriers but instead uses two-photon absorption. High speed operation was achieved using pump induced non-degenerate two-photon absorption inside the submicron size silicon wire waveguides. The device required low pulse energy (few pJ) for logic gate operation.  相似文献   

12.
Salem R  Murphy TE 《Optics letters》2004,29(13):1524-1526
We present experimental measurements of the polarization dependence of two-photon absorption in silicon photodiodes at 1550 nm, and we offer a simple theory that explains our observations. Based on this theory, we propose and demonstrate that it is possible to construct an optical cross-correlation system that is polarization insensitive, provided that one of the two input polarization states can be controlled.  相似文献   

13.
The biexciton states in CuBr have been studied at K ? 0 by two-photon absorption, using two different laser sources. The energy and the symmetry of these states have been unambiguously assigned: EB(Γ1) = 5.9061 eV, EB(Γ5) = 5.9103 eV, EB(Γ3) = 5.9128 eV.  相似文献   

14.
The pulse profile influence of excitation light on the two-photon absorption coefficient β is theoretically and numerically studied. Based on Gaussian spatial and temporal laser, we obtain an expansion formula of energy transmission. As compared with a plain beam and a pulse beam that is rectangular in time but Gaussian in space, the relative deviations of β turn out to be about 214% and 47%, respectively. These differences indicate that a smaller β may be obtained than the real one in usual nonlinear transmission. Our result suggests that by taking real pulse profile into account, a more exact β can be derived in energy transmission measurement.  相似文献   

15.
We propose and experimentally demonstrate ultrawideband monocycle pulse generation using nondegenerate two-photon absorption in a silicon waveguide. The free-carrier absorption induced pulse tail at the rising edge of inverted probe pulse is largely compensated by the overlapped pump pulse and results in a symmetric negative monocycle pulse. A 143 ps Gaussian monocycle pulse is successfully obtained with a 131.7% fractional 10 dB bandwidth using a 68 ps pulsed pump. The 10 dB bandwidth and center frequency of the RF spectrum for the generated monocycle pulse can be largely tuned using an optical delay line. An operational bandwidth of 30 nm is demonstrated experimentally with stable performance, and larger optical bandwidth is expected.  相似文献   

16.
17.
Two-photon absorption provided by a semiconductor mirror structure is shown to reduce amplitude fluctuations significantly in a harmonically mo e-locked fiber ring laser. Pulse dropouts are eliminated in a laser that produces picosecond pulses at a repetition rate of 2 GHz.  相似文献   

18.
An exact solution for the propagation of two ultrashort pulses through a two-photon near resonant absorbing medium is obtained under the condition that the initial number of photons/s cm2 in the two pulses are the same. High-power pulses develop sharp peaks as they propagate through the medium.  相似文献   

19.
 为了提高高功率激光光束质量和改善近场均匀性,在SILEX-Ⅰ超短脉冲激光装置的泵浦光系统上进行实验,研究了一种双光子吸收材料的光限幅特性及对激光近场的改善情况。利用泵浦光SAGA激光器输出的激光进行光限幅特性实验。结果表明:该材料具有明显的光功率限幅特性,且透过率较高,当入射光强小于0.60 GW/cm2时,透过率大于90%。在SILEX-Ⅰ装置的泵浦光系统进行联机实验,研究了该材料对激光近场均匀性的改善。实验结果表明:经过材料后,激光近场均匀性和调制度有明显改善。  相似文献   

20.
为了提高高功率激光光束质量和改善近场均匀性,在SILEX-Ⅰ超短脉冲激光装置的泵浦光系统上进行实验,研究了一种双光子吸收材料的光限幅特性及对激光近场的改善情况。利用泵浦光SAGA激光器输出的激光进行光限幅特性实验。结果表明:该材料具有明显的光功率限幅特性,且透过率较高,当入射光强小于0.60 GW/cm2时,透过率大于90%。在SILEX-Ⅰ装置的泵浦光系统进行联机实验,研究了该材料对激光近场均匀性的改善。实验结果表明:经过材料后,激光近场均匀性和调制度有明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号