共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaolong Li Yueming Wang Thomas Allgurén Klas Andersson Jost O.L. Wendt 《Proceedings of the Combustion Institute》2021,38(3):4309-4316
The focus of this paper is on effects of chlorine and sulfur on coal ash deposition rates, under practically relevant but systematically controlled combustion conditions. This problem is important, not so much for coal, but to understand and predict deposition rates for biomass combustion where chlorine contents can be high. To this end, ash deposition rates on a controlled temperature surface were measured for controlled amounts of chlorine and sulfur added to a pulverized coal, doped with potassium and burned in a 100 kW rated combustion rig. Previous work with 35 tests on 11 coal, biomass and petroleum coke fuels burned under a range of operating conditions had strongly suggested that the deposition rate of the tightly bound inside deposits was independent of the ash aerosol composition, and depended only on PM1 in the flue gas. The loosely bound outside deposition rate was dependent primarily on the total alkali content in the flue gas. The new results using chlorine added to the fuel (in the form of ammonium chloride) required these previous conclusions to be drastically revised. They showed that chlorine, not alkali alone, had large effects on the deposition rate of the inside deposits, which now were orders of magnitude higher than without chlorine addition, and did not fit previous (multi-fuel) correlations with PM1. Sulfur addition, together with chlorine, did not affect deposition rates much, although it did lower the chlorine content of the deposit. These results are interpreted in terms of the ash aerosol size segregated composition, which was also measured, and potential sulfation reactions within the deposit. 相似文献
2.
Qi Gao Shuiqing Li Yingqi Zhao Qiang Yao 《Proceedings of the Combustion Institute》2019,37(3):2831-2839
In this paper, the correlations between coal/char fragmentation and fly ash formation during pulverized coal combustion are investigated. We observed an explosion-like fragmentation of Zhundong coal in the early devolatilization stage by means of high-speed photography in the Hencken flat-flame burner. While high ash-fusion (HAF) bituminous and coal-derived char samples only undergo gentle perimeter fragmentation in the char burning stage. Simultaneously, combustion experiments of two kinds of coals were conducted in a 25?kW down-fired combustor. The particle size distributions (PSDs) of both fine particulates (PM1-10) and bulk fly ash (PM10+) were measured by Electrical Low Pressure Impactor (ELPI) and Malvern Mastersizer 2000, respectively. The results show that the mass PSD of residual fly ash (PM1+) from Zhundong coal exhibits a bi-modal shape with two peaks located at 14?µm and 102?µm, whereas that from HAF coal only possesses a single peak at 74?µm. A hybrid model accounting for multiple-route ash formation processes is developed to predict the PSD of fly ash during coal combustion. By incorporating coal/char fragmentation sub-models, the simulation can quantitatively reproduce the measured PM1+ PSDs for different kinds of coals. The sensitivity analysis further reveals that the bi-modal mass distribution of PM1+ intrinsically results from the coal fragmentation during devolatilization. 相似文献
3.
《Proceedings of the Combustion Institute》2023,39(3):3333-3341
Motion and swelling behavior of single bituminous coal particles during volatile combustion are investigated in a laminar flow reactor using a joint experimental and numerical approach. Three different particle samples with mean diameters of 90, 120, and 160 µm are studied in a conventional N/O atmosphere with 20 vol% O mole fraction. Diffuse backlight-illumination (DBI) measurements with high temporal (10 kHz) and spatial ( 19 lp/mm) resolutions, combined with detailed parameter evaluation methods, provide fundamental insights into interactions of particle with flow and flame. The acceleration behavior of different particles is assessed based on the response time following the viscosity drag law. Rotation speed is determined by temporally tracking the orientation angle and shown to strongly correlate with the particle size and the devolatilization process. Simultaneously measured slip velocity and particle diameter enable evaluating time-dependent particle Reynolds numbers . The swelling behavior is temporally synchronized with the devolatilization process and reveals a strong dependency on particle diameters. To better understand experimental observations, detailed simulations are first quantitatively validated against experimental ignition delay times and then applied to predict particle temperature histories. Further, the reduction of particle heating rates with increasing diameters is numerically quantified. The maximum swelling ratio decreases from 1.22 to 1.07 as the heating rate increases from approximately 3 10 to 8 10 K/s. 相似文献
4.
Joakim M. Johansen Martti Aho Kari Paakkinen Raili Taipale Helge Egsgaard Jon G. Jakobsen Flemming J. Frandsen Peter Glarborg 《Proceedings of the Combustion Institute》2013,34(2):2363-2372
Studies of the release of critical ash-forming elements from combustion of biomass are typically conducted with small sample masses under well controlled conditions. In biomass combustion on a grate, secondary recapture and release reactions in the fuel-bed may affect the overall release and partitioning of these elements. Earlier work by the authors on the release of K, Cl, and S from a high-chlorine biomass (corn stover) in a lab-scale setup is, in the present work, supplemented with novel results from a bench-scale fixed bed reactor and a 100 kW moving grate pilot facility. The results from the bench-scale reactor indicate that S and K release are not significantly affected by secondary reactions, while Cl is partly recaptured by secondary reactions in the char. A linear increase in K-release was observed from 50% at 906 °C to almost 80 wt.% at 1234 °C when firing only corn stover. A similar release profile was observed for Cl, from 65% to nearly 100%. Complete release of S was achieved at 1234 °C with a linear increase from 70% at 906 °C. Co-combustion of corn stover with low-Cl wood chips served to increase the bed temperature, resulting in complete and close to complete release of Cl and S, respectively. An increase in the relative K-release was observed when increasing the wood chip fraction from 40% to 100% (energy basis). Pilot scale flue gas results indicate that the share of Cl released as HCl decreases towards 0% as the share of wood chips is increased towards 100%. Hence, co-combustion of corn stover with wood chips is expected to decrease the absolute release of KCl due to the lower feedstock quantity of Cl, however, increase the relative release of Cl as KCl. 相似文献
5.
Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation
In the present work, combination of ultraviolet (UV) irradiations (using 8 W UV tube) with ultrasonic (US) irradiations (rated power 1 kW and frequency of 25 kHz) has been investigated for the degradation of phenol at pilot scale of operation. Different modes of operation viz. UV alone, US alone, UV/US, UV/TiO2 (photocatalysis), UV/H2O2, UV/NaCl, UV/US/TiO2 (sonophotocatalysis) and H2O2 assisted sonophotocatalysis have been investigated with an objective of maximizing the extent of phenol degradation. Effect of presence of hydrogen peroxide and sodium chloride at a concentration of 10 g/l and TiO2 over a range of 0.5–2.5 g/l has been investigated. It has been observed that 2.0 g/l of TiO2 is the optimum concentration, beyond which a decrease in the extent of degradation is observed. Maximum extent of degradation of phenol was 37.75% for H2O2 assisted photosonocatalysis at pH of 2. The present work is first of its kind to report the use of combined ultrasonic and UV irradiations at pilot scale operation and obtained results should induce some degree of certainty in proposed industrial applications of sonochemical reactors for wastewater treatment. 相似文献
6.
7.
8.
In the present work, the accelerated ageing process of sherry vinegar has been studied at pilot scale by means of the joint application of ultrasound, micro-oxygenation and wood chips (American oak, French oak and Spanish oak). The CIELab parameters have been studied as well as the polyphenolic and volatile content of the aged vinegar samples. Vinegars aged with American oak presented different chromatic characteristics to those aged with French and Spanish oak and a lower polyphenolic and volatile content than the latter ones. On the other hand, Spanish oak generated vinegars with a higher content of volatile compounds and an intermediate polyphenolic profile between those obtained using French and American oak. In addition, the use of ultrasound for a period between 4 and 21 days, generated vinegars with similar characteristics to others that were aged in the traditional way for between 2 and 6 months. It has been demonstrated that the use of ultrasound, combined with micro-oxygenation and chip addition, is a technique which can accelerate the ageing process of vinegars at a pilot scale, so it could be a viable alternative to obtain sherry vinegars aged in a shorter time. 相似文献
9.
《Proceedings of the Combustion Institute》2023,39(3):3283-3291
Torrefied wood originating from beetle-killed trees is an abundant biomass fuel that can be co-fired with coal for power generation. In this work, pulverized torrefied wood, a bituminous coal (Sufco coal) and their blended fuel with a mixing ratio of 50/50 wt.%, are burned in a 100-kW rated laboratory combustor under similar conditions. Ash aerosols in the flue gas and ash deposits on a temperature-controlled surface are sampled during combustion of the three fuels. Results show that ash formation and deposition for wood combustion are notably different from those for coal combustion, revealing different mechanisms. Compared to the coal, the low-ash torrefied wood produces low concentrations of fly ash in the flue gas but significantly increased yields (per input ash) of ash that has been vaporized. All the mineral elements including the semi- or non-volatile metals in the wood are found to be more readily partitioned into the PM10 ash than those in the coal. The inside layer deposits sticking to the surface and the loosely bound outside deposits exposed to the gas both show a linear growth in weight during torrefied wood test. Unlike coal combustion, in which the concentration of (vaporized) ash PM1 controls the inside deposition rate, wood combustion shows that the formation of porous bulky deposits by the condensed residual ash dominates the inside deposition process. Co-firing removes these differences between the wood and coal, making the blended fuel to have more similar fly ash characteristics and ash deposition behavior to those of the bituminous coal. In addition, results also show some beneficial effects of co-firing coal with torrefied wood, including reduction of the total deposition rate and the minimization of corrosive alkali species produced by wood. 相似文献
10.
J.M. Jones L.I. Darvell T.G. Bridgeman M. Pourkashanian A. Williams 《Proceedings of the Combustion Institute》2007,31(2):1955-1963
Potassium, a key nutrient in biomass growth, contributes to problematic ash chemistry and corrosion in combustion. This study seeks to examine the behaviour and fate of potassium in biomass combustion under high temperature flame conditions. A model to predict potassium release is presented. Short rotation willow coppice was treated to reduce metals, by water-washing, and remove them, by demineralisation, and then potassium was doped into the demineralised sample. The resultant fuels have been studied for their combustion behaviours in methane–air flames, both as suspended, moving particles, and as stationary, supported particles, using high speed digital video. In the latter case, potassium release was measured simultaneously by emission spectroscopy. In both experiments, potassium was seen to catalyse devolatilisation, and for the stationary particles it was possible to detect potassium catalysis in the char burn-out rates. Demineralised willow was seen to melt in the flame and combustion resembled heavy oil combustion, rather than solid fuel combustion. The residual char was extremely slow to burn-out. In the potassium-doped particles, potassium was seen to evolve over three regimes, devolatilisation, char burn-out and, less significantly, during ash cooking. The first two evolution processes have been modelled using an apparent first order devolatilisation rate for the first stage, and a KOH evaporation model for the second stage. 相似文献
11.
《Proceedings of the Combustion Institute》2023,39(3):3259-3269
The present work reports an experimental study of particle group combustion of pulverized bituminous coal in laminar flow conditions using advanced multi-parameter optical diagnostics. Simultaneously conducted high-speed scanning OH-LIF, diffuse backlight-illumination (DBI), and Mie scattering measurements enable analyses of three-dimensional volatile flame structures and soot formation in conventional (i.e., N/O) and oxy-fuel (i.e., CO/O) atmospheres with increasing O enrichment. Particle-flame interaction is assessed by calculating instantaneous particle number density (PND), whose uncertainties are estimated by generating synthetic particles in DBI image simulations. Time-resolved particle sequences allow the evaluation of the particle velocity, which indicates a PND dependency and interactions between particles and volatile flames. 3D flame structure reconstruction and soot formation detection are first demonstrated in single-shot visualizations and then extended to analyze effects of O concentration, PND, and inert gas composition statistically. The increasing O concentration significantly reduces local flame extinction and suppresses soot formation in N and CO atmospheres. Volatile flames reveal higher intensities and lower lift-off heights as O concentration increases. In contrast to that, an increased PND leads to earlier flame extinction and stronger soot formation due to the local gas temperature reduction and oxygen depletion. The lift-off height reduces with increasing PND, which is explained by the complex interaction between particle dynamics, heat transfer, and volatile reactions. Slightly stronger soot formation and delayed ignition are observed in CO atmospheres, whereas CO replacement reveals insignificant influences on the flame extinction behavior. Finally, non-flammability is quantified for particle group combustion at varying PNDs in different atmospheres. 相似文献
12.
Formation of the remnant close to Planck scale and the Schwarzschild black hole with global monopole
In this paper, we use the generalized uncertainty principle (GUP) and quantum tunneling method to research the formation of the remnant from a Schwarzschild black hole with global monopole. Based on the corrected Hamilton–Jacobi equation, the corrections to the Hawking temperature, heat capacity and entropy are calculated. We not only find the remnant close to Planck scale by employing GUP, but also research the thermodynamic stability of the black hole remnant according to the phase transition and heat capacity. 相似文献
13.
The model that takes chemical reactions, heat and mass transfers in the boundary layer of the particle into account simultaneously, is developed for simulating the combustion of a pulverized coal particle. The FTIR in situ temperature-measurements and the comparison between numerical simulations for the pulverized coal and the devolatilized char show that the volatile flame induces the combustion of the primary product of surface oxidation CO. Due to the influence of volatile flame, the char particle can be ignited at temperature lower than its heterogeneous ignition temperature, which elucidates the physical essence of joint hetero-homogeneous ignition mode discovered by Jüntgen. 相似文献
14.
《Proceedings of the Combustion Institute》2023,39(3):3539-3549
An improved model of fine particulate matter formation coupling the mechanism of mineral coalescence and char fragmentation under different pulverized coal combustion environments has been constructed. Firstly, based on the theoretical model of char fragmentation and percolation, the included minerals with different types and particle sizes are constructed in the model, and a three-dimensional char particle sub-model is established. And the type, content and particle size distribution of included minerals are introduced as input parameters by using computer controlled scanning electron microscopy (CCSEM) technology. All of the above makes it more in line with the actual distribution of the included minerals. Then a sub-model of char fragmentation is built based on the sub-model of the char particle. And considering the influence of char combustion reaction on the particle formation process and melting characteristics of included minerals, a sub-model of mineral melting coalescence under different combustion environments is established. Finally, based on this improved model, we compared the calculation results with the experimental data and the calculation results of the traditional model. Fully considering the process of mineral coalescence and char fragmentation, which contains the characteristics of different included minerals, the results show that the newly established model has a good fitting effect for the experiment and is closer to the actual process of char particle combustion to generate particles. By the new model, the influence of the factors (mineral content, particle size distribution and porosity) on the formation of particulate matter is preliminarily analyzed. 相似文献
15.
M.A. Gondal A. Dastageer M. Maslehuddin A.J. Alnehmi O.S.B. Al-Amoudi 《Optics & Laser Technology》2012,44(3):566-571
In concrete structures, an excessive amount of sulfate ions can cause severe damage to the strength and the stability of the building structures and hence a sensitive and reliable technique for sulfate ion detection in concrete is highly desirable. Laser-induced breakdown spectroscopy (LIBS) is one of the most reliable and sensitive techniques to identify the presence of potentially dangerous sulfur in the concrete structure. The atomic emission lines of sulfur lying in the 200–900 nm region are mostly singly ionized states and hence inherently very weak. In order to enhance the sensitivity of the conventional LIBS system, we employed a dual pulsed LIBS system for detection of weak spectral line of sulfur in concrete using the S II peak at 545.38 nm as a marker for quantifying sulfur content in the concrete. The 1064 nm fundamental and 266 nm fourth harmonic of the Nd:YAG laser in conjunction with Spectrograph/gated ICCD camera are the core factors in improvement of sensitivity. Furthermore, the dual pulsed LIBS system and the fine maneuvering of the gate parameters and interpulse delay yielded improvement in the sensitivity, and resulted in a systematic correlation of the LIBS signal with the concentration of sulfur in the concrete sample. In order to quantify the sulfur content in concrete, a calibration curve was also drawn by recording the LIBS spectra of sample having sulfur in various concentrations. The limit of detection achieved with our dual pulsed LIBS system is approximately 38 μg/g. 相似文献
16.
V. A. Zabaykin A. A. Smogolev 《Russian Journal of Physical Chemistry B, Focus on Physics》2007,1(3):245-249
The efficiency of combustion in a supersonic high-temperature flow at spread and local hydrogen feed is considered. Similarities and distinctions of combustion in open and confined space were examined with consideration given to the effect of gasdynamic structures typical of supersonic air jets. 相似文献
17.
Denggao Chen Zhi Zhang Zhenshan Li Ningsheng Cai 《Proceedings of the Combustion Institute》2019,37(4):4435-4442
An online thermogravimetric measurement method of ash deposition was developed. Ash deposition and slag bubble in the reductive zone of pulverized coal staged combustion were investigated. Firstly, a steady pulverized coal staged combustion was achieved in an electrically heated down-fired furnace. Additionally, gas species, coal conversion, and particle size distribution were quantitatively measured. Secondly, real-time ash deposition rates at different temperatures (1100–1400 °C) were measured, and deposition samples were carefully collected with an N2 protection method. The morphologies of collected samples were investigated through a scanning electron microscope. It was found that the deposited ash transformed from a porous layer composed of loosely bound particles to a solid layer formed by molten slag. Different behaviors of the slag bubble were observed, and bubble sizes were significantly affected by the deposition temperature. A deposition and bubble formation mechanism was proposed and used for modeling. Results showed that the proposed model well predicted the observed ash deposition and bubble formation process. 相似文献
18.
Ling-Nan Wu Zhen-Yu Tian Wu Qin Xiao-Ying Hu Chang-Qing Dong 《Proceedings of the Combustion Institute》2021,38(4):5355-5362
Hydrogen cyanide (HCN) is an important intermediate during the conversion of fuel nitrogen to NOx. The mechanism of HCN oxidation to NO, N2, and N2O on the CaO (100) surface model was investigated using density functional theory calculations to elucidate the effect of in-furnace SOx removal on HCN oxidation in circulating fluidized bed boilers. HCN adsorption on the CaO (100) surface releases as high as 1.396 eV and the HC bond is strongly activated. The CaO (100) surface could catalyze the oxidation of CN radical to NCO with the energy barrier decreasing from 1.560 eV for the homogeneous case to 0.766 eV on the CaO (100) surface. The succeeding oxidation of NCO by O2 forming NO is catalyzed by the CaO (100) surface with the energy barrier decreasing from 0.349 eV (homogeneous process) to 0.026 eV on the CaO (100) surface, while the reaction between NCO and NO forming either NO or N2 is prohibited in comparison with corresponding homogeneous routes. The rate constants of these reactions under fluidized bed combustion temperature range are provided, and the calculation results lead to the conclusion that CaO (100) surface catalyzes the HCN conversion and improves the NO selectivity during HCN oxidation in the HCN/O2/NO atmosphere, which could well explain previous experimental observations. Kinetic parameters of HCN oxidation on the CaO (100) surface are provided in the Arrhenius form for future kinetic model development. 相似文献
19.
Francis B. Dejene Abdub G. Ali Hendrik C. Swart Reinhardt J. Botha Kittesa Roro Liza Coetsee Mart M. Biggs 《Central European Journal of Physics》2011,9(5):1321-1326
Material property dependence on the OH−/Zn2+ molar ratio of the precursor was investigated by varying the amount of NaOH during synthesis of ZnO. It was necessary to
control the water content and temperature of the mixture to ensure the reproducibility. It was observed that the structural
properties, particle size, photoluminescence intensity and wavelength of maximum intensity were influenced by the molar ratio
of the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite
ZnO, indicating a single phase. UV measurements show the absorption that comes from the ZnO nanoparticles in visible region.
The absorption edge of these ZnO nanoparticles are shifted to higher energies and the determined band gap energies are blue
shifted as the OH−/Zn2 molar ration increases, due to the quantum confinement effects. The photoluminescence characterization of the ZnO nanostructures
exhibited a broad emission band centred at green (600 nm) region for all molar ratios except for OH−/Zn2+ = 1.7 where a second blue emission around 468 nm was also observed. The photoluminescence properties of ZnO nanoparticles
were largely determined by the size and surface properties of the nanoparticles. 相似文献
20.
In the framework of QCD factorization, we study
decays. In order to more reliably determine the phenomenological parameters X
H and X
A arising from end-point divergences in the hard spectator scattering and weak annihilation contributions, we use the global analysis for twelve
and VP decay modes, such as
,
,
,
, et cetera, but excluding the modes whose (dominant) internal quark-level process is
. Based on the global analysis, we critically investigate possible magnitudes of X
H,A and find that both large and small X
H,A terms are allowed by the global fit. In the case of the large X
H,A effects, the standard model (SM) prediction of the branching ratios (BRs) for
is large and well consistent with the experimental results. In contrast, in the case of the small X
H,A effects, the SM prediction for these BRs is smaller than the experimental data. Motivated by the recent Belle measurement of
through
, if we take into account possible new physics effects on the quark-level process
, we can explicitly show that these large BRs can be understood even in the small X
H,A case. Specifically, we present two new physics scenarios: R-parity violating SUSY and R-parity conserving SUSY.Received: 28 April 2004, Revised: 12 July 2004, Published online: 7 September 2004 相似文献