首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
We present the first attempt to extract \(|V_{cb}|\) from the \(\Lambda _b\rightarrow \Lambda _c^+\ell \bar{\nu }_\ell \) decay without relying on \(|V_{ub}|\) inputs from the B meson decays. Meanwhile, the hadronic \(\Lambda _b\rightarrow \Lambda _c M_{(c)}\) decays with \(M=(\pi ^-,K^-)\) and \(M_c=(D^-,D^-_s)\) measured with high precisions are involved in the extraction. Explicitly, we find that \(|V_{cb}|=(44.6\pm 3.2)\times 10^{-3}\), agreeing with the value of \((42.11\pm 0.74)\times 10^{-3}\) from the inclusive \(B\rightarrow X_c\ell \bar{\nu }_\ell \) decays. Furthermore, based on the most recent ratio of \(|V_{ub}|/|V_{cb}|\) from the exclusive modes, we obtain \(|V_{ub}|=(4.3\pm 0.4)\times 10^{-3}\), which is close to the value of \((4.49\pm 0.24)\times 10^{-3}\) from the inclusive \(B\rightarrow X_u\ell \bar{\nu }_\ell \) decays. We conclude that our determinations of \(|V_{cb}|\) and \(|V_{ub}|\) favor the corresponding inclusive extractions in the B decays.  相似文献   

3.
The \(\eta \,\rightarrow \,3\pi \) decays are a valuable source of information on low energy QCD. Yet they were not used for an extraction of the three flavor chiral symmetry breaking order parameters until now. We use a Bayesian approach in the framework of resummed chiral perturbation theory to obtain constraints on the quark condensate and pseudoscalar decay constant in the chiral limit. We compare our results with recent CHPT and lattice QCD fits and find some tension, as the \(\eta \,\rightarrow \,3\pi \) data seem to prefer a larger ratio of the chiral order parameters. The results also disfavor a very large value of the pseudoscalar decay constant in the chiral limit, which was found by some recent work. In addition, we present results of a combined analysis including \(\eta \,\rightarrow \,3\pi \) decays and \(\pi \pi \) scattering and though the picture does not changed appreciably, we find some tension between the data we use. We also try to extract information on the mass difference of the light quarks, but the uncertainties prove to be large.  相似文献   

4.
The European Physical Journal A - In this paper, we discuss the evolution of breakup models from fully quantum mechanical, such as the Ichimura–Austern–Vincent model to semiclassical,...  相似文献   

5.
We consider a five-dimensional model with geometry \(\mathcal{M} = \mathcal{M}_4 \times \mathcal{S}_1\), with compactification radius R. The Standard Model particles are localized on a brane located at \(y=0\), with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance \(d=y/R\), with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (\(d=0\)), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.  相似文献   

6.
We use the representation theory of \({\mathcal{N}=2}\) superconformal algebra to study the elliptic genera of Calabi–Yau (CY) D-folds. We compute the entropy of CY manifolds from the growth rate of multiplicities of the massive (non-BPS) representations in the decomposition of their elliptic genera. We find that the entropy of CY manifolds of complex dimension D behaves differently depending on whether D is even or odd. When D is odd, CY entropy coincides with the entropy of the corresponding hyperKähler (D ? 3)-folds due to a structural theorem on Jacobi forms. In particular, we find that the Calabi–Yau 3-fold has a vanishing entropy. At D > 3, using our previous results on hyperKähler manifolds, we find \({S_{CY_D}\sim 2\pi \sqrt{\frac{(D-3)^2}{2(D-1)}n}}\). When D is even, we find the behavior of CY entropy behaving as \({S_{CY_D}\sim 2 \pi\sqrt{\frac{D-1}{2}n}}\). These agree with Cardy’s formula at large D.  相似文献   

7.
Spin correlations for the ΛΛ and Λ$ \bar \Lambda $ \bar \Lambda pairs, generated in relativistic heavy-ion collisions, and related angular correlations at the joint registration of hadronic decays of two hyperons, in which space parity is not conserved, are analyzed. The correlation tensor components can be derived from the double angular distribution of products of two decays by the method of “moments”. The properties of the “trace” of the correlation tensor (a sum of three diagonal components), determining the relative fractions of the triplet states and singlet state of respective pairs, are discussed. Spin correlations for two identical particles (ΛΛ) and two nonidentical particles (Λ$ \bar \Lambda $ \bar \Lambda ) are considered from the viewpoint of the conventional model of one-particle sources. In the framework of this model, correlations vanish at sufficiently large relative momenta. However, under these conditions, in the case of two nonidentical particles (Λ$ \bar \Lambda $ \bar \Lambda ) a noticeable role is played by two-particle annihilation (two-quark, two-gluon) sources, which lead to the difference of the correlation tensor from zero. In particular, such a situation may arise when the system passes through the “mixed phase.”  相似文献   

8.
9.
We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional \({{\mathcal N} = 2}\) supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kähler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergravity fermions. We quantize these models using BRST detour complex technology. The construction of a nilpotent BRST charge is achieved by using local (worldline) supersymmetry ghosts to generate special holonomy transformations. (An interesting byproduct of the construction is a novel Dirac operator on the superghost extended Hilbert space.) The resulting quantized models are gauge invariant field theories with fields equaling sections of special quaternionic vector bundles. They underly and generalize the quaternionic version of Dolbeault cohomology discovered by Baston. In fact, Baston’s complex is related to the BPS sector of the models we write down. Our results rely on a calculus of operators on quaternionic Kähler manifolds that follows from BRST machinery, and although directly motivated by black hole physics, can be broadly applied to any model relying on quaternionic geometry.  相似文献   

10.
Successful models of pure gravity mediation (PGM) with radiative electroweak symmetry breaking can be expressed with as few as two free parameters, which can be taken as the gravitino mass and \(\tan \beta \) . These models easily support a 125–126 GeV Higgs mass at the expense of a scalar spectrum in the multi-TeV range and a much lighter wino as the lightest supersymmetric particle. In these models, it is also quite generic that the Higgs mixing mass parameter, \(\mu \) , which is determined by the minimization of the Higgs potential is also in the multi-TeV range. For \(\mu >0\) , the thermal relic density of winos is too small to account for the dark matter. The same is true for \(\mu <0\) unless the gravitino mass is of order 500 TeV. Here, we consider the origin of a multi-TeV \(\mu \) parameter arising from the breakdown of a Peccei–Quinn (PQ) symmetry. A coupling of the PQ-symmetry breaking field, \(P\) , to the MSSM Higgs doublets, naturally leads to a value of \(\mu \sim \langle P \rangle ^2 /M_P \sim {\mathcal O}(100)\) TeV and of the order that is required in PGM models. In this case, axions make up the dark matter or some fraction of the dark matter with the remainder made up from thermal or non-thermal winos. We also provide solutions to the problem of isocurvature fluctuations with axion dark matter in this context.  相似文献   

11.
The LHCb results on the production of ? mesons in pp collisions at \(\sqrt s\) = 7 and 8 TeV are briefly reviewed.  相似文献   

12.
Physics of Atomic Nuclei - This study analyzed the fusions of zirconium with projectiles $${}^{28}$$ Si, $${}^{32,36}$$ S, $${}^{40,48}$$ Ca, $${}^{46,50}$$ Ti by using the CCFULL code. The...  相似文献   

13.
Kotikov  A. V.  Teber  S. 《Physics of Atomic Nuclei》2021,84(1):105-107
Physics of Atomic Nuclei - An exact formula that relates standard $$\zeta$$ functions and so-called hatted $$\zeta$$ ( $$\hat{\zeta}$$ ) functions in all orders of perturbation theory is presented....  相似文献   

14.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

15.
A direct entry and simple process for the synthesis of \(\upgamma \)-spiroiminolactones present in a large number of natural products has been developed. In the first step, the synthesis of parabanic acid derivatives was commenced from the reaction of \(\textit{N}{,}{} \textit{N}^{\prime }\)-disubstituted urea and thiourea with oxalyl chloride, then a three-component reaction was carried out with isocyanides, acetylenic esters, and \(\textit{N}{,}{} \textit{N}^{\prime }\)-disubstituted parabanic acid derivatives. The method allows the construction of a variety of \(\upgamma \)-spiroiminolactone structures in good to high yields starting from readily available precursors. It was found that in the case of \(\textit{N}{,}{} \textit{N}^{\prime }\)-diphenyl thioparabanic acid, additional products of \(\upgamma \)-dispiroiminolactones have been formed due to the higher electrophilicity of \(\upalpha \)-dicarbonyl groups. The structures were fully established using spectroscopic analysis NMR, IR, and Mass spectrometry. The crystal structure of \(\upgamma \)-dispiroiminolactone was confirmed from single-crystal X-ray diffraction study.  相似文献   

16.
In this paper we begin the study of the relationship between the local Gromov–Witten theory of Calabi–Yau rank two bundles over the projective line and the theory of integrable hierarchies. We first of all construct explicitly, in a large number of cases, the Hamiltonian dispersionless hierarchies that govern the full-descendent genus zero theory. Our main tool is the application of Dubrovin’s formalism, based on associativity equations, to the known results on the genus zero theory from local mirror symmetry and localization. The hierarchies we find are apparently new, with the exception of the resolved conifold in the equivariantly Calabi–Yau case. For this example the relevant dispersionless system turns out to be related to the long-wave limit of the Ablowitz–Ladik lattice. This identification provides us with a complete procedure to reconstruct the dispersive hierarchy which should conjecturally be related to the higher genus theory of the resolved conifold. We give a complete proof of this conjecture for genus g ≤ 1; our methods are based on establishing, analogously to the case of KdV, a “quasi-triviality” property for the Ablowitz–Ladik hierarchy at the leading order of the dispersive expansion. We furthermore provide compelling evidence in favour of the resolved conifold/Ablowitz–Ladik correspondence at higher genus by testing it successfully in the primary sector for g = 2.  相似文献   

17.
We are concerned with the inviscid limit of the Navier-Stokes equations to the Euler equations in \mathbb R3{\mathbb {R}^3} . We first observe that a pathwise Kolmogorov hypothesis implies the uniform boundedness of the α th -order fractional derivatives of the velocity for some α > 0 in the space variables in L 2, which is independent of the viscosity μ > 0. Then it is shown that this key observation yields the L 2-equicontinuity in the time variable and the uniform bound in L q , for some q > 2, of the velocity independent of μ > 0. These results lead to the strong convergence of solutions of the Navier-Stokes equations to a solution of the Euler equations in \mathbb R3{\mathbb {R}^3} . We also consider passive scalars coupled to the incompressible Navier-Stokes equations and, in this case, find the weak-star convergence for the passive scalars with a limit in the form of a Young measure (pdf depending on space and time). Not only do we offer a framework for mathematical existence theories, but also we offer a framework for the interpretation of numerical solutions through the identification of a function space in which convergence should take place, with the bounds that are independent of μ > 0, that is in the high Reynolds number limit.  相似文献   

18.
19.
We study the question of magnetic confinement of quantum particles on the unit disk \({\mathbb {D}}\) in \({\mathbb {R}^2}\) , i.e. we wish to achieve confinement solely by means of the growth of the magnetic field \({B(\vec x)}\) near the boundary of the disk. In the spinless case, we show that \({B(\vec x)\ge \frac{\sqrt 3}{2}\cdot\frac{1}{(1-r)^2}-\frac{1}{\sqrt 3}\frac{1}{(1-r)^2\ln \frac{1}{1-r}}}\) , for \({|\vec x|}\) close to 1, insures the confinement provided we assume that the non-radially symmetric part of the magnetic field is not very singular near the boundary. Both constants \({\frac{\sqrt 3}{2}}\) and \({-\frac{1}{\sqrt 3}}\) are optimal. This answers, in this context, an open question from Colin de Verdière and Truc (Ann Inst Fourier 2011, Preprint, arXiv:0903.0803v3). We also derive growth conditions for radially symmetric magnetic fields which lead to confinement of spin 1/2 particles.  相似文献   

20.
Goriachuk  I. O.  Kataev  A. L. 《JETP Letters》2020,111(12):663-667
JETP Letters - For $${\cal N} = 1$$ supersymmetric Yang—Mills theory without matter it is demonstrated that there is a class of renormalization schemes, in which the exact Novikov, Shifman,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号