首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induced electrokinetic transport in micro-nanofluidic interconnect devices   总被引:3,自引:0,他引:3  
Hybrid micro-nanofluidic interconnect devices can be used to control analyte transfer from one microchannel to the other through a nanochannel under rest, injection, and recovery stages of operation by varying the applied potential bias. Using numerical simulations based on coupled transient Poisson-Nernst-Planck and Stokes equations, we examine the electrokinetic transport in a gateable device consisting of two 100 microm long, 1 microm wide negatively charged microchannels connected by a 1 microm long, 10 nm wide positively charged nanochannel under both positive and negative bias potentials. During injection, accumulation of ions is observed at the micro-nano interface region with the positive potential and depletion of ions is observed at the other micro-nano junction region. Net space charge in the depletion region gives rise to nonlinear electrokinetic transport during the recovery stage due to induced pressure, induced electroosmotic flow of the second kind, and complex flow circulations. Ionic currents are computed as a function of time for both positive and negative bias potentials for the three stages. Analytical expressions derived for ion current variation are in agreement with the simulated results. In the presence of multiple accumulation or depletion regions, we show that a hybrid micro-nano device can be designed to function as a logic gate.  相似文献   

2.
A nanochannel array based nanodevice can mimic the biological environments and thus unveil the natural properties, conformation and recognition information of biomolecules such as proteins and DNA in confined spaces. Here we report that porous anodic alumina (PAA) of a highly parallel nanochannel array covalently modified with proteins significantly modulates the transport of a negatively charged probe of ferricyanide due to the electrostatic interactions between the probes and modified nanochannel inner surface. Results show that such electrostatic interaction exists in a wide range of ionic strength from 1 mM to 100 mM in 20 nm nanochannels modified with proteins (hemoglobin, bovine serum albumin, and goat anti-rabbit IgG secondary antibody). In addition, the maximal steady-state flux of the charged probe through the modified nanochannel array is directly related to the ionic strength which determines the electric double layer thickness and solution pH which modulates the nanochannel surface charge. Thus, the modulated mass transport of the probe by solution pH can be used to study the charge properties of the immobilized proteins in nanochannel confined conditions, leading us to obtain the isoelectric point (pI) of the proteins confined in nanochannels. The determined pI values of two known proteins of hemoglobin and bovine serum albumin are close to the ones of the same proteins covalently modified on a 3-mercaptopropionic acid self-assembled monolayer/gold electrode. In addition, the pI of an unknown protein of goat anti-rabbit IgG secondary antibody confined in nanochannels was determined to be 6.3. Finally, the confinement effect of nanochannels on the charge properties of immobilized proteins has been discussed.  相似文献   

3.
A stable interface between two insoluble currents in a microchannel reactor has been obtained by selecting the solvents and adjusting the flow rate; titania particles with a size of less than 10 nm could be prepared continuously on this interface; this new method shows great advantage for the control and measurement of particle sizes.  相似文献   

4.
We describe Monte Carlo simulations of resonance energy transfer (RET) experiments for immobile donor (D) and acceptor (A) dyes confined to planar, cylindrical, and spherical restricted geometries. We compare values of the quantum efficiency (PhiET) evaluated through consideration of individual donor-acceptor pairs, with values calculated assuming a pre-averaged value of the orientation parameter /kappa/2 = 0.476 appropriate for infinite three dimensional (3D) space. For dyes confined to restricted geometries where the length scale of the confining dimension is less than or equal to the F?rster radius R0, the coupling of the orientation parameter and the donor-acceptor distance becomes noticeable. Values of Phi(ET) obtained by proper consideration of the orientation parameter are smaller than those calculated using /kappa/2 = 0.476. We use this Monte Carlo method to reanalyze the fluoresce decay measured from dye-labeled poly(isoprene-b-methyl methacrylate) diblock copolymer with lamellar structure,(1) from which the interface thickness for PI-PMMA lamella can be retrieved. We found the retrieved interface thickness is sensitive to the choice of dipole orientation. If all dipoles in the confined polymer interface have a random orientation, the value of interface thickness was found to be 0.9 +/- 0.2 nm through consideration of individual dipole orientations. Assumption of /kappa/2 = 0.476 in the FRET calculations leads to a larger value of interface thickness (1.3 +/- 0.2 nm) due to the neglect of the coupling between dipole orientation and D-A distance for the dyes confined to lamellar interfaces.  相似文献   

5.
利用静电纺丝技术构建了新型三维纳米通道系统。 在不同质量分数的聚苯乙烯(PS:Mw=1.3×105)溶液中加入一定量十二烷基磺酸钠(SDS),于不同电压下进行静电纺丝。 所得纤维在90 ℃加热粘连后,形成三维聚苯乙烯纳米网络模板,然后于聚二甲基硅氧烷(PDMS)预聚体(含10%交联剂)灌注进入上述模板并交联形成网络复合材料,再用二硫化碳超声除去聚苯乙烯纤维。 采用扫描电子显微镜、透射电子显微镜对纤维模板形貌和纳米通道进行了表征。 结果表明,质量分数为10%的PS溶液加入0.5%SDS,在20 kV电压下进行静电纺丝,得到直径为150 nm的纤维。 SDS的加入对纺丝纤维具有平滑作用,使得粘连的纤维模板更易去除,形成的三维纳米通道直径约160 nm,与纤维模板直径一致。 该类型纳米通道可以应用于医学药物载体、纳流控芯片等众多领域。  相似文献   

6.
We present a new and simple approach to fabricate wafer-scale, thin encapsulated, two-dimensional nanochannels by using conventional surface-micromachining technology and thin-film evaporation. The key steps to the realization of two-dimensional nanochannels are a fine etching of a sacrificial layer to create underetching spaces at the nanometer regime, and an accurate thin-film evaporation for encapsulation. Well-defined cross-sectional, encapsulated nanochannel arrays with dimensions as small as 20 nm in both width and height have been realized at the wafer-scale. The fabricated nanochannels with a channel length of 10mm have been used as a suitable fluidic platform for confining a solution containing nanomolar concentrations of Alexa fluorescent molecules. Initial results toward visualization of single Alexa molecules in the confined solution are reported.  相似文献   

7.
We developed a novel flow control system for a nanofluidic chemical process. Generally, flow control in nanochannels is difficult because of its high-pressure loss with very small volume flow rate. In our flow control method, liquid pressure in a microchannel connected to the nanochannels is regulated by utilizing a backpressure regulator. The flow control method was verified by using simple structured microchip, which included parallel nanochannels. We found that the observed flow rate was three times lower than the value expected from Hagen-Poiseuille's equation. That implied a size-dependent viscosity change in the nanochannels. Then, we demonstrated mixing of two different fluorescent solutions in a Y-shaped nanochannel and also a proton exchange reaction in the Y-shaped nanochannel. The flow control method will contribute to further integration of nanochemical systems.  相似文献   

8.
A theory is presented of the elongation of double-stranded DNA confined in a nanochannel based on a study of the formation of hairpins. A hairpin becomes constrained as it approaches the wall of a channel which leads to an entropic force causing the hairpin to tighten. The DNA in the hairpin remains double-stranded. The free energy of the hairpin is significantly larger than what one would expect if this entropic effect were unimportant. As a result, the distance between hairpins or the global persistence length is often tens of micrometer long and may even reach millimeter sizes for 10 nm thin channels. The hairpin shape and size and the DNA elongation are computed for nanoslits and circular and square nanochannels. A comparison with experiment is given.  相似文献   

9.
质子化过程是大多数酸碱理论的核心,也发生在许多生命过程中。因此,研究限域环境中分子或官能团的质子化过程将为进一步认识酸碱理论和阐述限域环境中生物分子的基本行为提供理论依据。本文提出了一种以荷电电化学探针检测多孔氧化铝阵列纳米通道内表面官能团质子化过程的新方法。该方法利用纳米通道表面官能团的质子化过程改变了表面荷电性质,从而调控荷电电化学探针在纳米通道中的传输行为。实验中以喷涂在阵列氧化铝纳米通道膜一侧的薄金膜为工作电极,检测通过阵列纳米通道荷电电化学探针的流量,以此获得纳米通道限域条件下的质子化过程。同时以多孔氧化铝阵列纳米通道为限域空腔,利用硅烷化反应将氨基修饰在纳米通道的内表面,通过检测不同pH值条件下铁氰酸根离子在纳米通道中流量的变化,获得了纳米通道限域条件下氨基质子化滴定曲线。结果表明,纳米通道限域条件下氨基官能团发生一步质子化,其pK1/2值为5.9。本文提出的方法适用于研究纳米通道限域条件下其它官能团或生物分子的质子化过程。  相似文献   

10.
Longitudinal and volume viscosities of Lennard-Jones fluid, argon–krypton binary mixture and isotopic fluid mixture confined to nanochannels of different widths are calculated by employing theoretical technique based on Green–Kubo formula. A significant enhancement is observed in longitudinal and volume viscosities when width of the nanochannel is less than 10 nm. Effect of mass ratio of two species on longitudinal and volume viscosities is also studied for equimolar isotopic fluid mixture. It is found that enhancement in viscosity is more for larger mass ratios. It is also noted that enhancement in longitudinal and shear viscosities is more than volume viscosity.  相似文献   

11.
Transportation, release behavior, and stability of a green fluorescent protein (GFP, 3×4 nm) in self‐assembled organic nanotubes with three different inner diameters (10, 20, and 80 nm) have been studied in terms of novel nanocontainers. Selective immobilization of a fluorescent acceptor dye on the inner surface enabled us to not only visualize the transportation of GFP in the nanochannels but to also detect release of the encapsulated GFP to the bulk solution in real time, based on fluorescence resonance energy transfer (FRET). Obtained diffusion constants and release rates of GFP markedly decreased as the inner diameter of the nanotubes was decreased. An endo‐sensing procedure also clarified the dependence of the thermal and chemical stabilities of the GFP on the inner diameters. The GFP encapsulated in the 10 nm nanochannel showed strong resistance to heat and to a denaturant. On the other hand, the 20 nm nanochannel accelerated the denaturation of the encapsulated GFP compared with the rate of denaturation of the free GFP in bulk and the encapsulated GFP in the 80 nm nanochannels. The confinement effect based on rational fitting of the inner diameter to the size of GFP allowed us to store it stably and without denaturation under high temperatures and high denaturant concentrations.  相似文献   

12.
In this paper, a confined micronanochannel is presented to concentrate ions in a restricted zone. A general model exploiting the Poisson–Nernst–Plank equations coupled with the Navier–Stokes equation is employed to simulate the electrokinetic ion transport. The influences of the micronanochannel dimension and the surface charge density on the potential distribution, the ion concentration, and the fluid flow are investigated. The numerical results show that the potential drop depends mainly on the nanochannel, instead of the confined channel. Both decreasing the width and increasing the length enhance the ion enrichment performance. For a given nanochannel, ultimate value of ion concentration may be determined by the potential at the center point of the nanochannel. The study also shows that the enrichment stability can be improved by increasing the micronanochannel width, decreasing the micronanochannel length and reducing the surface charge density.  相似文献   

13.
Xu BY  Xu JJ  Xia XH  Chen HY 《Lab on a chip》2010,10(21):2894-2901
This paper reports a new fabrication method of lithography-free nanochannel array. It is based on the cracking process on the surface of a polystyrene (PS) Petri-dish, one type of thermoplastic that is composed of uni-axial macromolecular chains. Under proper conditions, parallel nanochannels with equal interspaces are obtained. Control over the channel depth from 20 nm to 200 nm is achieved, with the channel length reaching tens of millimetres. The PDMS replication based on PS nanochannel array has been successfully carried out. In combination with the microstructure, both an ion enrichment device and a current rectification device are fabricated, and their quantified characters manifested the applicability of the channel array structure in nanofluidics.  相似文献   

14.
We describe the use of hard etching methods to create nanodimensional channels and their use as templates for the formation of polymer filament arrays with precise dimensional and orientational control in a single integrated step. The procedure is general as illustrated by the radical, coordination, and photochemical polymerizations that were performed in these nanochannels. The nanochannel templates (20 nm high, 20-200 nm wide, and 100 mum long) were fabricated by the combined use of electron-beam lithography and a sacrificial metal line etching technique. Radical polymerization of acrylates, metal-catalyzed polymerization of norbornene, and photochemical polymerization of 1,4-diiodothiophene were carried out in these nanochannels. The polymers grown follow the dimensions and orientation of the channels, and the polymer filaments can be released without breaking. The approach opens up the possibility of just-in-place manufacturing and processing of patterns and devices from nanostructured polymers using well-established polymer chemistry.  相似文献   

15.
In sharp contrast to the prevailing view that a stationary charge outside a nanochannel impedes water permeation across the nanochannel, molecular dynamics simulations show that a vibrational charge outside the nanochannel can promote water flux. In the vibrational charge system, a decrease in the distance between the charge and the nanochannel leads to an increase in the water net flux, which is contrary to that of the fixed‐charge system. The increase in net water flux is the result of the vibrational charge‐induced disruption of hydrogen bonds when the net water flux is strongly affected by the vibrational frequency of the charge. In particular, the net flux is reaches a maximum when the vibrational frequency matches the inherent frequency of hydrogen bond inside the nanochannel. This electromanipulating transport phenomenon provides an important new mechanism of water transport confined in nanochannels.  相似文献   

16.
The integration of a microchannel with a nanochannel is known to exhibit anomalous nonlinear current-voltage characteristics. In this paper, we perform detailed numerical simulations considering a 2-D nonlinear ion transport model, to capture and explain the underlying physics behind the limiting resistance and the overlimiting current regions, observed predominantly in a highly ion-selective nanochannel. We attribute the overlimiting current characteristics to the redistribution of the space charges resulting in an anomalous enhancement in the ionic concentration of the electrolyte in the induced space charge region, beyond a critical voltage. The overlimiting current with constant conductivity is predicted even without considering the effects of fluidic nonlinearities. We extend our study and report anomalous rectification effects, resulting in an enhancement of current in the non-ohmic region, under the application of combined AC and DC electric fields. The necessary criteria to observe these enhancements and some useful scaling relations are discussed.  相似文献   

17.
A numerical model for the adsorption kinetics of proteins on the walls of a microchannel has been developed using the finite element method (FEM) to address the coupling with diffusion phenomena in the restricted microchannel volume. Time evolutions of the concentration of one species are given, both in solution and on the microchannel walls. The model illustrates the adsorption limitation sometimes observed when the microdimensions of these systems induce a global depletion of the bulk solution. A new non-dimensional parameter is introduced to predict the final value of the coverage of any microsystem under static adsorption. A working curve and a criteria (h/K[Gamma](max) > 10) are provided in order to choose, for given adsorption characteristics, the value of the volume-to-surface ratio (i.e. the channel height h) avoiding depletion effects on the coverage (relative coverage greater than 90% of the theoretical one). Simulations were compared with confocal microscopy measurements of IgG antibody adsorption on the walls of a PET microchannel. The fit of the model to the experimental data show that the adsorption is under apparent kinetic control.  相似文献   

18.
We report the synthesis and characterization of multiferroic BiFeO3 (BFO) nanowires. The perovskite BFO nanowires with diameters about 60 nm and lengths about 10 μm were fabricated by means of the sol-gel method utilizing nanochannel alumina templates with post annealing at 700 °C. The microstructure of the BFO nanowires was investigated by means of x-ray diffraction and transmission electron microscopy, and the ferroelectric characteristic of BFO nanowires were demonstrated.  相似文献   

19.
We report the fabrication of La(0.7)Ca(0.3)MnO(3) nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.  相似文献   

20.
This paper gives an overview of the most commonly used techniques for nanostructuring and nanochannel fabrication employed in nanofluidics. They are divided into two large categories: top-down and bottom-up methods. Top-down methods are based on patterning on large scale while reducing the lateral dimensions to the nanoscale. Bottom-up methods arrange atoms and molecules in nanostructures. Here, we review the advantages and disadvantages of those methods and give some future perspectives. It is concluded that technology in the region of 1-10 nm is lacking and potentially can be covered by using the pulsed-laser deposition method as a controlled way for thin film deposition (thickness of a few nanometers) and further structuring by the top-down method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号