首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures for trace cobalt determinations by adsorptive stripping voltammetry at in situ and ex situ plated bismuth film electrodes are presented. These exploit the enhancement of the cobalt peak obtained by using the Co(II)–dimethylglyoxime–cetyltrimethylammonium bromide–piperazine-N,N-bis(2-ethanesulfonic acid) system. The calibration graph for an accumulation time of 120 s was linear from 2 × 10–10 to 2 × 10–8 mol L–1. The relative standard deviation from five determinations of cobalt at a concentration of 5 × 10–9 mol L–1 was 5.2%. The detection limit for an accumulation time of 300 s was 1.8 × 10–11 mol L–1. The proposed procedure was applied to cobalt determination in certified reference materials and in tap and river water samples.  相似文献   

2.
This work describes an electroanalytical investigation of dopamine using cyclic voltammetry (CV) and the graphite–polyurethane composite electrode (GPU). In CV studies, well-defined redox peaks characterize the oxidation process at the GPU electrode, which is indicative of electrocatalytic effects associated with active sites on the GPU electrode surface. A new analytical methodology was developed using the GPU electrode and square wave voltammetry (SWV) in BR buffer solution (0.1 mol L–1; pH 7.4). Analytical curves were constructed under optimized conditions (f=60s–1, Ea=50 mV, EI=2 mV) and detection and quantification limits of 6.4×10–8 mol L–1 (12.1 g L–1) and 5.2×10–6 mol L–1 (0.9 mg L–1), respectively, were achieved. The precision of the method was checked by performing ten successive measurements for a 9.9×10–6 mol L–1 dopamine solution. For intra-assay and inter-assay precisions, the relative standard deviations were 1.9 and 2.3%, respectively. In order to evaluate the developed methodology, the determination of dopamine was performed with good sensitivity and selectivity, without the interference of ascorbic acid in synthetic cerebrospinal fluid, which indicates that the new methodology enables reliable analysis of dopamine.  相似文献   

3.
The conditions for the flow determination of Al(III), Bi(III), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Nd(III), Ni(II), Pb(II), Pr(III), and Zn(II) by reaction with Xylenol Orange in aqueous solutions at pH 4.5 and the determination of Cd(II), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), and Zn(II) by reaction with 4-(2-thiazolylazo)resorcinol in water–ethanol mixtures (5 : 1) at pH 5.0 using an injected sample volume of 80 L were proposed. The limits of detection were n × 10–8n × 10–7 mol/L; the linearity ranges in the calibration graphs were of about three orders of magnitude; the relative standard deviation was of 3–7%.  相似文献   

4.
New macromolecular chelators have been synthesized, by loading 2,3-dihydroxypyridine (DHP) on cellulose via linkers -NH-CH2-CH2-NH-SO2-C6H4-N=N- and -SO2-C6H4-N=N-, and characterized by elemental analysis, TGA, IR, and CPMAS 13C NMR spectra. The cellulose with DHP anchored by the shorter linker had better sorption capacity (between 69.7 and 431.1 mol g–1) for Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Fe(III)) than the other (51.9–378.1 mol g–1); the former was therefore studied in detail as a solid extractant for these metal ions. The optimum pH ranges for quantitative sorption (recovery 97.6–99.8%) on this matrix were: 7.0–9.0, 6.0–9.0, 3.0–8.0, 6.0–8.0, 6.0–9.0, 6.0–7.0, and 2.0–6.0 respectively. Desorption was quantitative with 0.5 mol L–1 HCl and 0.5 mol L–1 HNO3 (for Pb). Simultaneous sorption (at pH 7.0) of all metal ions other than Fe(III) was possible if their total concentration did not exceed the sorption capacity (lowest value). The recovery of seven metal ions from their mixture at pH 6.0 was nearly quantitative when the concentration level of each metal ion was 0.2 g mL–1. The optimum flow rate of metal ion solutions for quantitative sorption of metal onto a column packed with DHP-modified cellulose was 2–7 mL min–1, whereas for desorption the optimum flow rate for the acid solution was 2–4 mL min–1. The time needed to reach 50% of the total loading capacity (t1/2) was <5 min for all the metal ions except Ni and Pb. The limit of detection (blank+3s) was from 0.70 to 4.75 g L–1 and the limit of quantification (blank+10s) was between 0.79 and 4.86 g L–1. The tolerance limits for NaCl, NaBr, NaI, NaNO3, Na2SO4, Na3PO4, humic acid, EDTA, Ca(II), and Mg(II) for sorption of all metal ions are reported. The column packed with DHP-anchored cellulose can be reused at least 20 times for enrichment of metal ions in water sample. It has been used to enrich all the metal ions in pharmaceutical and water samples before their determination by flame AAS. RSD for these determinations was between 1.1 and 6.9%.  相似文献   

5.
A flow-injection ultrafiltration sampling chemiluminescence system for on-line determination of cimetidine–bovine serum albumin (BSA) interaction is proposed in this paper. Cimetidine can be oxidized by N-bromosuccinimide (NBS) and sensitized by fluorescein to produce high chemiluminescence emission in basic media. The concentration of cimetidine is linear with the CL intensity in the range 3×10–7–1×10–4 mol L–1 with a detection limit of 1×10–7 mol L–1 (3). The drug and protein were mixed in different molar ratios in 0.067 mol L–1 phosphate buffer, pH 7.4, and incubated at 37 °C in a water bath. The ultrafiltration probe was utilized to sample the mixed solution at a flow rate of 5 µL min–1. The data obtained by the proposed ultrafiltration flow-injection chemiluminescence method was analyzed with Scrathard analysis and a Klotz plot. The estimated association constant (K) and the number of the binding site (n) on one molecule of BSA by Scrathard analysis and Klotz plot were 3.15×104 L mol–1 and 0.95, 3.25×104 L mol–1 and 0.92, respectively. The proposed system proved that flow-injection chemiluminescence analysis coupled with on-line ultrafiltration sampling is a simple and reliable technique for the study of drug–protein interaction.  相似文献   

6.
A novel procedure has been developed for spectrophotometric determination of anionic surfactants in water using a solenoid micro-pump as fluid-propulsion device. The proposed method is based on substitution of methyl orange (MO) by anionic surfactants in the formation of an ion-pair with the cetyl pyridine ion (CPC+) at pH 5.0. The flow network comprised four solenoid micro-pumps which, under microcomputer control, enabled sample and reagent introduction, and homogenisation in the reaction zone. The system is flexible and simple to operate and control, and sensitive and precise. The analytical plot for the anionic surfactant was linear between 1.43×10–6 and 1.43×10–5 mol L–1 (0.5 to 5.0 mg L–1; R=0.997, n=5). The relative standard deviation was 0.8% (n=11) for a sample containing 5.74×10–6 mol L–1 (2 mg L–1) surfactant. The limit of detection was 9.76×10–8 mol L–1 (0.034 mg L–1) and the sampling throughput was 60 determinations per hour. The results obtained for washing-water samples were comparable with those obtained by use of the reference method, and no significant differences at the 95% confidence level were observed.  相似文献   

7.
A quantitative analysis method for penicillins including ampicillin (AmP), benzyl penicillin (BP), oxacillin (OA) and amoxycillin (AmO) is proposed that makes use of the totally internally reflected resonance light scattering (TIR-RLS) signal from the penicillin at the H2O/CCl4 interface in the presence of cetyltrimethylammonium bromide (CTMAB), and enables the pharmacokinetics of penicillin taken orally and excreted through urine to be monitored. Penicillin is coadsorbed with CTMAB at the H2O/CCl4 interface in neutral solution, resulting in the formation of ion associates that display greatly enhanced TIR-RLS signals (maximum at 368–372 nm). This enhanced TIR-RLS intensity was found to be proportional to the penicillin concentration over the range 0.2×10–6 to 2.2×10–6 mol L–1, with limits of determination (3) of 5.0×10–8 to 7.0×10–8 mol L–1. Pharmacokinetics studies performed using the present method show that the excretion of orally-taken ampicillin through urine has a half-time of 1.05 h and an excremental quantum over 8 h of 49.3%, respectively.  相似文献   

8.
Silica gel was chemically modified with anN-acyl-N-benzoylthiourea group. This material behaved as a selective means of preconcentrating Cu(II), Zn(II) and Cd(II) from ethanol by the column technique. Ethanolic solutions having 6 mol of the metal ions were percolated through the column and retentions of 100% were achieved for all metals. Zinc and copper were eluted quantitatively from the column bed with 5mL of ethanolic O.1molL–1 (for Zn) and 0.9 mol L–1 (for Cu) citric acid. Cadmium was recovered totally with 60 mL of ethanolic 2.0 mol L–1 citric acid. The modified silica was shown to be chemically stable after various adsorption-elution cycles (at least twenty).  相似文献   

9.
Complexation of aluminium(III) with the fluorogenic ligand chromotropic acid (4,5-dihydroxynaphthalene-2,7-disulfonic acid) has been revisited with the aim of using enhancement of the fluorescence intensity as an analytical tool. Complexation at the optimum pH4 was shown to lead to a 1:1 complex with a stability constant log 110=18.4±0.7. The fluorogenic effect was thoroughly investigated. Nearly selective excitation of the chelate rather than the ligand could be achieved at wavelengths longer than 360 nm. For analytical purposes the main interfering ion was Ga3+. The strongest competing ligand was shown to be citric acid. Competitive complexation by acetate or formate ions can also make their use in a buffer at the usual concentration, 0.2 mol L–1, questionable, whereas a 10–2 mol L–1 formic acid buffer was shown to be a good alternative. The calibration plot showed that the dependence of response on Al(III) concentration was linear up to 500 g L–1; the detection limit was 0.65 g L–1 (3SD blank, n=10, SD=±1.4% at 10 g L–1 and ±0.8% at 100 g L–1). The analytical procedure was successfully applied to several samples of tap water and the results were in good agreement with those from AAS determination.  相似文献   

10.
An adsorptive stripping voltammetric procedure for the determination of cobalt in a complex matrices at an in situ plated lead film electrode was described. The procedure exploits the enhancement effect of a cobalt peak observed in the system Co(II)–nioxime–piperazine‐1,4‐bis(2‐ethanesulfonic acid)–cetyltrimethylammonium bromide. The calibration graph was linear from 5×10?10 to 2×10?8 mol L?1 and from 1×10?10 to 1×10?9 mol L?1 for the accumulation times 120 and 600 s, respectively. The detection limit (based on the 3 σ criterion) for Co(II) following accumulation time of 600 s was 1.1×10?11 mol L?1. The interference of high concentrations of foreign ions and surfactants was studied.  相似文献   

11.
A method for the determination of triphenyltin and diphenyltin was developed by reversed-phase high-performance liquid chromatography with UV detection. Triphenyltin and diphenyltin were separated using a reversed-phase Symmetry C18 column (150 × 3.9 mm, 5 m) with tetrahydrofuran-water-acetonitrile-glacial acetic acid (13:25:5:7, v/v) containing 0.05% triethylamine and 1.0% sodium acetate as mobile phase at 0.50 mL min–1 and detection at 257 nm. The calibration curves were linear from 0.26 mol L–1 to 1100 mol L–1 for triphenyltin with a correlation coefficient of 0.9999 (n=12) and from 0.60 mol L–1 to 1200 mol L–1 for diphenyltin with a correlation coefficient of 0.9991 (n=12), respectively. The detection limits of triphenyltin and diphenyltin were 0.2 mol L–1 and 0.4 mol L–1, respectively. The method was successfully applied to the determination of triphenyltin and its metabolite diphenyltin in culture medium. The recoveries of triphenyltin and diphenyltin were in the ranges of 97.7% to 103.3% and 85.5% to 91.6%, respectively.  相似文献   

12.
The sorption of Cs(I), Sr(II) and Co(II) from aqueous solutions on alumina under various experimental conditions has been studied by batch techniques. Freundlich, Langmuir and Dubnin-Raduskevich equations have been used to interpret the sorption data. The values of various thermodynamic parameters have been determined. The sorption of Cs(I) and Sr(II) on alumina is exothermic in nature while that of Co(II) is an endothermic process. The H o values for Cs(I), Sr(II) and Co(II) were–23.29 KJ/mol at 298K,–35.3 KJ/mol at 293 K and 13.49 KJ/mol at 293 K, respectively. Negative values of G o show the spontaneity of the sorption processes; G o values of Cs(I) and Sr(II) becomes less negative at higher temperatures while the G o values of Co(II) become more negative with increasing temperature. At higher temperatures, less amounts of Cs(I) and Sr(II) and greater amounts of Co(II) are sorbed on alumina. The values of the mean free energies of sorption,E, for Sr(II) and Co(II) at various temperatures were within the range of 7–10 KJ/mol which show that these metals are sorbed on alumina predominantly by an ion-exchange process.  相似文献   

13.
An integrated procedure using mass spectrometry and molecular biology for determination of estrogenicity in natural waters and sediments is reported. Solid-phase extraction (SPE) and pressurized-liquid extraction (PLE), respectively, were used for isolation of endocrine-disrupting compounds (EDC) from surface waters and sediments, followed by liquid chromatography–mass spectrometry using an electrospray interface (LC–ESI-MS). Twenty seven EDC were determined: non-ionic surfactants (nonylphenol ethoxylate), alkylphenols (e.g. nonylphenol and octylphenol), bisphenol A, phthalates, and natural and synthetic steroid sex hormones. Limits of detection varied from 0.02 to 0.22 g L–1 and from 1 to 10 g kg–1 in water and sediments, respectively. Recoveries ranged from 65 to 125% and 73 to 97% for waters and sediments, respectively. In addition to LC–ESI-MS determination, extracts obtained by SPE and PLE were analyzed by the recombinant yeast assay (RYA) to assess total estrogenic activity. This bioassay detects natural estrogens and xenoestrogens, producing a quantitative measurement of EDC irrespective of the identity of the chemical responsible for the activity. As a novelty, a relative estrogenicity factor was determined for 19 analytes with EC 50 values ranging from 10–10 to 10–9 mol L–1 for synthetic estrogens, from 10–7 to 10–5 mol L–1 for alkylphenol derivatives, and from 10–5 to 10–4 mol L–1 for phthalates and benzothiazoles. By use of this integrated chemical–ecotoxicological approach good correlation was usually established between chemical composition and estrogenic effects for surface water and sediment samples from Portugal. Estrogenic activity observed was mainly attributed to the presence of nonylphenolic compounds (with concentrations of NP ranging from 0.1 up to 44 g L–1 in waters and up to 1172 g kg–1 in sediments), and to the sporadic presence of estrogens, detected at ng L–1 levels.  相似文献   

14.
Summary The complexescis--[Co(trien)(ImH)Cl]2+ (ImH=imidazole, trien=1,8-diamino-3,6-diazaoctane),cis--[Co(trien)(Bun-NH2)Cl]2+,cis--[Co(trien)(NH2CH2-CH(OMe)2)Cl]2+ andcis-2-[Co(trien)(py)Cl]2+ (py=pyridine) have been characterised and their kinetics of base hydrolysis studied. Thecis--isomers which have afac-fac arrangement of the trien ligand have values of k OH 25 in the 73 to 253 dm3 mol–1 s–1 range at I=0.1 mol dm–3. Extremely rapid base hydrolysis is observed withcis-2-[Co(trien)(py)Cl]2+ where k OH 25 is 6.65×106 mol3 mol–1 s–1 at I=0.1 mol dm–3. This complex has amer-fac arrangement of the trien ligand with flatsec-NH donor leading to rapid base hydrolysis due to good -overlap between the conjugate base and cobalt(III). The pyridine ligand causes aca. 30 fold rate increase compared with the hydrolysis ofcis-2-[Co(trien)(NH3)Cl]2+.  相似文献   

15.
A new sensitive adsorptive voltammetric procedure is described for trace measurement of thorium. It is based on the cathodic stripping peak of the thorium–alizarin complexon (ALC) complex at a carbon paste electrode (CPE). The complex of Th(IV) with alizarin is adsorbed at a CPE in a mixed buffer solution (pH 5.0) which consists of 0.1mol·L–1 sodium acetate and 0.04mol·L–1 potassium biphthalate, yielding a sensitive cathodic voltammetric peak corresponding to the reduction of alizarin in the complex at –0.57V (vs. SCE). The second-order derivative peak current of the complex is linearly dependent upon the concentration of Th(IV) over the range of 3.0×10–9 8.0×10–7mol·L–1. The detection limit is 1.0×10–9mol·L–1 for 180s accumulation. The molar ratio of each component in the complex was estimated as nTh(IV):nALC=1:1 by a continuous variation method. The electrode processes of the Th(IV)–alizarin complex at a CPE were investigated. The procedure was successfully applied to the trace determination of thorium in ore and clay samples.  相似文献   

16.
A new highly selective thiocyanate electrode based on N,N-bis-(furaldehyde)-1,2-phenylenediamine-dipicolyl copper(II) complex [Cu(II)-BFPD] as neutral carrier is described. The electrode has an anti-Hofmeister selectivity sequence: SCN>I>Sal>ClO4 >Br>NO2 >Cl>NO3 >SO4 2–>SO3 2–>H2PO4 and a near-Nernstian potential linear range for thiocyanate from 1.0×10–1 to 5.0×10–6 mol L–1 with a detection limit 2.0×10–6 mol L–1 and a slope of 57.5 mV decade–1 in pH 5.0 of phosphate buffer solution at 20 °C. The response mechanism is discussed on the basis of results from A.C. impedance measurement and UV spectroscopy. The anti-Hofmeister behavior of the electrode results from a direct interaction between the central metal and the analyte ion and a steric effect associated with the structure of the carrier. The electrode has the advantages of simplicity, fast response, fair stability and reproducibility, and low detection limit. The selectivity of electrodes based on [Cu(II)-BFPD] exceeds that of classical anion-sensitive membrane electrodes based on ion exchangers such as lipophilic quaternary ammonium or phosphonium salts. Application of the electrode for determination of thiocyanate in waste water samples from a laboratory and a gas factory, and in human urine samples, is reported. The results obtained were fair agreement with the results obtained by HPLC.  相似文献   

17.
Aspartic acid was covalently grafted on to a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation of the amino-containing compound. X-ray photoelectron spectroscopic (XPS) measurement and cyclic voltammetric experiments proved the aspartic acid was immobilized as a monolayer on the GCE. Electron transfer to Fe(CN)64– in solution of different pH was studied by cyclic voltammetry. Changes in solution pH resulted in the variation of the charge state of the terminal group; surface pKa values were estimated on the basis of these results. Because of electrostatic interactions between the negatively charged groups on the electrode surface and dopamine (DA) and ascorbic acid (AA), the modified electrode was used for electrochemical differentiation between DA and AA. The peak current for DA at the modified electrode was greatly enhanced and that for AA was significantly reduced, which enabled determination of DA in the presence of AA. The differential pulse voltammetric (DPV) peak current was linearly dependent on DA concentration over the range 1.8×10–6–4.6×10–4 mol L–1 with slope (nA mol–1 L) and intercept (nA) of 47.6 and 49.2, respectively. The detection limit (3) was 1.2×10–6 mol L–1. The high selectivity and sensitivity for dopamine was attributed to charge discrimination and analyte accumulation. The modified electrode has been used for determination of DA in samples, in the presence of AA, with satisfactory results.  相似文献   

18.
A reliable and reproducible method, capillary zone electrophoresis with amperometric detection (CZE–AD), has been developed for separation and quantification of levodopa methyl ester (LDME) and its biotransformation products levodopa (L-DOPA) and dopamine (DA) in rat serum. A carbon-disk electrode was used as working electrode. The optimum conditions for CZE detection were 50 mmol L–1 phosphate solution at pH 7.0 as running buffer, 17 kV as separation voltage, 1.0 V (vs Ag/AgCl, 3.0 mol L–1) as detection potential, and sample injection for 8 s at 17 kV. The linear ranges were from 2.4×10–2 to 2.2 g mL–1 for LDME, 2.9×10–1 to 49.5 g mL–1 for L-DOPA, and 1.4×10–2 to 1.5 g mL–1 for DA with correlation coefficients of 0.9997, 0.9994, and 0.9999, respectively. The detection limits for LDME, L-DOPA, and DA were 14.6, 98.0, and 9.7 ng mL–1, respectively. Recoveries were 80.3% for LDME, 93.5% for L-DOPA, and 86.5% for DA. This method was applied to serum samples after intravenous injection of LDME and L-DOPA to rats.  相似文献   

19.
Manganese can be determined by colorimetry with previous oxidation of Mn(II) in a strong basic medium, using 3,3,5,5-tetramethylbenzidine as a chromogenic reagent. The molar absorptivity of the reaction product is 3.4 × 104 mol–1l cm–1l, the detection limit 3 ng/ml, the RSD (0.5 mg/l,n = 8) 0.9% and the calibration range (1-cm cells) 0.02–0.8 mg/1 V(V), Cr(VI) and Co(II) are the most significant interferences. The new method was compared with an AAS procedure (air-acetylene flame) with previous solvent extraction and also with a colorimetric method for the determination of manganese in sea and drinking water.  相似文献   

20.
The coupling reaction of 4-aminoantipyrine (4-AAP) with phenol using the superoxide anion radical ( ) as oxidizing agent under the catalysis of horseradish peroxidase (HRP) was studied. Based on the reaction, produced by irradiating vitamin B2 (VB2) was spectrophotometrically determined at 510 nm. Under the optimum experimental conditions, the relationship between A 510 and concentration was linear in the range 9.14×10–6–1.2×10–4 mol L–1. The detection limit was determined to be 1.37×10–6 mol L–1. A possible reaction mechanism was discussed. The effect of interferences and surfactants on the determination of was also investigated. The proposed method was applied to determine superoxide dismutase activity in garlic, scallion, and onion with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号