首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polythiophene thin film was fabricated on gold nanoparticle (AuNP)-deposited indium-tin-oxide (ITO) electrodes with electropolymerization, whereas AuNPs were predeposited on the ITO surface. A photocurrent via photoexcited polythiophene increased with AuNPs which was attributed to the localized surface plasmon resonance. Investigation of the AuNP-density dependence on the relative enhancement of photocurrent revealed the maximum effect at 14% of AuNP-density, while 68% of AuNP-density exhibited smaller photocurrent than the polythiophene electrode without AuNPs. We have revealed that the effects of AuNPs saturate in the fairly low density region, and that the excess AuNPs even in the range of submonolayer resulted in the decrement of photocurrents.  相似文献   

2.
We have fabricated gold nanoparticle (AuNP) arrays on indium-tin oxide (ITO) substrates in a nearly one-dimensional fashion. AuNPs were site-selectively immobilized on ITO of which the surface had been patterned by a nanolithography process based on scanning probe microscopy. The fabricated nanoscale lines covered with aminosilane self-assembled monolayer served as chemisorption sites for citrate-stabilized AuNPs of 20 nm in diameter, accordingly, AuNP nanolines with a thickness of single nanoparticle diameter were spontaneously assembled on the lines. In this 1D array, the AuNPs were almost separated from each other due to the electrostatic repulsion between their negatively charged surface layers. Furthermore, a reorganization process of the immobilized AuNP arrays has been successfully demonstrated by replacing each AuNP's surface layer from citric acid to dodecanethiol. By this process, the AuNPs lost their electrostatic repulsion and became hydrophobic so as to be attracted to each other through hydrophobic interaction, resulting in reorganization of the AuNP array. By repeating the deposition and reorganization cycle, AuNPs were more densely packed. The optical absorption peak of the arrays due to their plasmonic resonance was found to shift from 526 to 590 nm in wavelength with repeating cycles, indicating that the resonance manner was changed from the single nanoparticle mode to the multiple particle mode with interparticle coupling.  相似文献   

3.
A new method to increase the active area (A act) of nanoelectrode ensembles (NEEs) is described. To this aim, gold nanoparticles (AuNPs) are immobilized onto the surface of NEEs using cysteamine as a cross-linker able to bind the AuNPs to the heads of the nanoelectrodes to obtain the so-called AuNPs-NEEs. The analysis of the cyclic voltammograms recorded in pure supporting electrolyte showed that the presence of the nanoparticles reflects in an, approximately, ten-times increase in the electrochemically active area of the ensemble. The measurement of the amount of electroactive polyoxometalates, which can be adsorbed on the gold surface of NEEs vs. AuNPs-NEEs, confirmed a significant increase of active area for the latter. These evidences indicate that there is a good electronic connection between the AuNPs and the underlying nanoelectrodes. The possibility to exploit AuNPs-NEEs for biosensing application was tested for the case of DNA-hybridization detection. After immobilization on the gold surface of AuNPs-NEEs of a thiolated single-stranded DNA, the hybridization with complementary sequences labeled with glucose oxidase (GOx) was performed. The detection of the hybridization was achieved by adding to the electrolyte solution the GOx substrate (i.e., glucose) and a suitable redox mediator, namely the (ferrocenylmethyl) trimethylammonium (FA+) cation; when the hybridization occurs, an electrocatalytic increase of the oxidation current of FA+ is recorded. Comparison of electrocatalytic current recorded at DNA modified NEEs and AuNPs-NEEs indicate, for the latter, a significant increase in sensitivity in the detection of the DNA-hybridization event.  相似文献   

4.
通过改良的“Hummers方法”制得氧化石墨烯,利用聚二甲基硅氧烷(PDMS)弹性印章的微接触印刷技术,以Au膜和氧化石墨烯溶液为“墨水”,通过二次印章转移,分别将Au纳米粒子和氧化石墨烯(Graphene Oxide,GO)转移至修饰了(3-氨基丙基)三乙氧基硅烷(APTES)的ITO基底(APTES/ITO)表面. 利用场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)等表征图案,结果表明转移的AuNPs和GO组成的复合图案均匀,致密性较好. 利用表面电势显微镜(Surface Potential Microscope,SEPM,KFM)测定了各部分的表面电势,以APTES/ITO基底表面为表面电势零点,各部分表面电势大小为:APTES/ITO > GO > Au(0,-11.6,-44.2 mV).  相似文献   

5.
A new method has been proposed for designing composite materials that represent highly ordered two-dimensional metal nanoparticles ensembles having variable geometric parameters and being embedded into the surface layer of a polymer matrix to a predetermined depth. The method is based on diblock copolymer micellar lithography and the effect of decreased glass-transition temperature of a polymer surface as compared with its bulk value. The possibility of independent variations in the depth of embedding of metal nanoparticles (by system annealing) and their size (by seeded growth) has resulted in the systematic study of the influence of the temperature and time of annealing on the kinetics of nanoparticle embedding into a polymer. For the first time, the plasmon-resonant properties of hexagonally ordered ensembles of gold nanoparticles located at a polymer-air interface have been experimentally studied. It has been established that the embedding of an ensemble of nanoparticles into a polymer is accompanied by a bathochromic shift of the maximum of its localized surface plasmon resonance due to a growth in the effective dielectric permittivity of the environment of the nanoparticles. An empirical equation has been proposed, which satisfactorily describes these experimental data.  相似文献   

6.
采用无氰化学镀金法在聚二甲基硅氧烷(PDMS)印章表面镀金, 通过微接触印刷技术将PDMS印章上的Au 纳米粒子(AuNPs)分别转移到氧化铟锡(ITO)透明导电膜玻璃, 修饰了(3-巯基丙基)三甲氧基硅烷(MPTMS)的ITO基底(MPTMS/ITO)和表面电镀了铜膜的ITO(Cu/ITO)表面上, 同时形成有序的结构或者图案.通过场发射扫描电镜(FE-SEM), 原子力显微镜(AFM)和显微共聚焦激光拉曼光谱仪等对实验结果进行表征.结果表明, 该转移AuNPs的方法对基底表面特性并无特殊要求, 是一种简单、快速、无污染、低成本的AuNPs转移技术, 而且转移了AuNPs的ITO基底具有表面增强拉曼光谱(SERS)活性, 有望在SERS中有所应用.  相似文献   

7.
The gold nanoparticles (AuNPs) sputtered on indium tin oxide (ITO) were used to investigate the origin of the high catalytic activity of AuNPs toward electrooxidation of CO in alkali media. We demonstrated that the catalytic activity is closely related to the gold–ITO perimeter, which represents only a very small percentage of the total surface area of AuNPs. Increasing the perimeter-to-surface ratio of the ITO-supported AuNPs leads to an increase of catalytic activity. This work provides a potential strategy to further promote the catalytic activity of AuNPs in the electrochemical system.  相似文献   

8.
纳米金颗粒具有高的消光系数和良好的表面等离子体共振特性, 其等离子体共振特性受纳米金颗粒的尺寸和周围环境等因素的影响. 本文基于半导体纳米晶电化学发光信号对金纳米颗粒的距离依赖性制备了DNA电化学发光传感器. 首先利用循环伏安法(CV)在玻碳电极(GCE)表面原位沉积金纳米颗粒(AuNPs), 巯基丙酸包裹的CdS量子点(QDs)与氨基修饰的双链DNA (dsDNA)通过酰胺键缩合, 形成量子点修饰的双链DNA(QDs-dsDNA). 最后将QDs-dsDNA 通过dsDNA 另一端的巯基组装到纳米金表面, 得到CdS QDs-DNA/AuNPs/GCE电化学发光传感器. 在优化电极表面QDs-dsDNA密度、金纳米颗粒沉积方法等实验条件的基础上, 对不同传感器的表面性质进行了表征, 如形貌和电化学阻抗等. 进一步通过控制纳米金和CdS QDs之间的DNA研究了纳米金对CdS QDs发光信号的影响作用. 结果显示DNA链的长度和类型对发光信号有着重要的影响. 最后将此传感器用于环境污染物的DNA损伤检测, 显示出很好的灵敏响应.  相似文献   

9.
Wang Q  Yang X  Wang K  Tan W  Gou J 《The Analyst》2008,133(9):1274-1279
A simple, convenient and effective method based on the surface plasmon resonance (SPR) technique was introduced for recognition of single-base mismatch DNA (smDNA) by Au nanoparticle (AuNPs)-assisted electroelution. In this method, target DNA, including perfectly matched DNA and smDNA, hybridized with the DNA probes immobilized on Au film and AuNPs, then the Au film was negatively charged. Owing to the difference in stability between single-base mismatch and perfect match DNA, effective distinction between complementary DNA (cDNA) and smDNA was achieved in the presence of an electric field: double-stranded DNA (dsDNA) formed between smDNA targets and DNA probes was denatured by the repulsion force acting on the negatively-charged DNA-linked AuNPs, while the perfectly matched duplex was not influenced. However, if the AuNPs were absent, the effects of cDNA and smDNA were not distinguishable. The effects of electric field intensity and mismatch sites were also investigated. All of the operations were performed under mild conditions. The results showed that AuNP-assisted electroelution may be exploited for the construction of biosensors with high selectivity.  相似文献   

10.
This paper introduces strategies for enhancement of a surface plasmon resonance (SPR) signal by adopting colloidal gold nanoparticles (AuNPs) and a SiO2 layer on a gold surface. AuNPs on SiO2 on a gold surface were compared with an unmodified gold surface and a SiO2 layer on a gold surface with no AuNPs attached. The modified surfaces showed significant changes in SPR signal when biomolecules were attached to the surface as compared with an unmodified gold surface. The detection limit of AuNPs immobilized on a SPR chip was 0.1 ng mL−1 for the prostate-specific antigen (PSA), a cancer marker, as measured with a spectrophotometer. Considering that the conventional ELISA method can detect ∼10 ng mL−1 of PSA, the strategy described here is much more sensitive (∼100 fold). The enhanced shift of the absorption curve resulted from the coupling of the surface and particle plasmons by the SiO2 layer and the AuNPs on the gold surface.  相似文献   

11.
Jianwen Wang  Yifeng Tu 《Talanta》2009,77(4):1454-4466
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability.  相似文献   

12.
With the aids of SEM,XPS measurements,localized plasmon resonance light scattering(PRLS) spectrometry and light scattering imaging,investigations on the amalgamation process of both cetyltrimethylammonium bromide(CTAB) and citrate-coated gold nanoparticles(AuNPs) in the presence of Hg2+ showed that the Au-Hg amalgam process of gold nanoparticles is surface coating dependent in aqueous medium,and the scattering light color change of AuNPs under a dark-field microscope is blue-shifted from red-orange into yellow-orange or even yellow.The former one involves the reduction of Hg2+ to Hg0 species and adsorption of Hg0 on the surfaces of AuNPs,while the later one indicates the shape-evolution of AuNPs.  相似文献   

13.
A simple preparation method of gold nanoparticles (AuNPs) with 4-acylamidobenzenethiol derivative (BD) was improved to obtain the larger size of AuNPs which exhibited localized surface plasmon resonance. The spectroscopic characterizations of two kinds of BD-stabilized AuNPs were carried out by means of ATR-FTIR and Raman spectroscopy in order to clarify the conformation and orientation of BDs adsorbed on AuNPs. The relation between the stability of AuNPs and the adsorbed states of BDs were also discussed. The average sizes of the resulting AuNPs were 18 nm for BD1 and 30 nm for BD2, respectively. It was found that the BD1-capped AuNPs formed large aggregates. The results of vibrational spectroscopy revealed that loosely packed self-assembled monolayer (SAM) of BD1 molecules was formed on the surface of the AuNPs; on the other hand, densely packed SAM was formed in the case of BD2. We concluded the difference behavior between the two types of molecules was caused by the functional groups. The sulfuryl groups of BD2 induced highly ordered SAM and suppressed aggregate formation of AuNPs.  相似文献   

14.
Gold nanoparticles (AuNPs) are attractive materials for the immobilization of enzymes due to several advantages such as high enzyme loading, absence of internal diffusion limitations, and Brownian motion in solution, compared to the conventional immobilization onto porous macroscopic supports. The affinity of AuNPs to different groups present at the protein surface enables direct enzyme binding to the nanoparticle without the need of any coupling agent. Enzyme activity and stability appear to be improved when the biocatalyst is immobilized onto AuNPs. Rhamnulose-1-phosphate aldolase (RhuA) was selected as model enzyme for the immobilization onto AuNPs. The enzyme loading was characterized by four different techniques: surface plasmon resonance (SPR) shift and intensity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). AuNPs-RhuA complexes were further applied as biocatalyst of the aldol addition reaction between dihydroxyacetone phosphate (DHAP) and (S)-Cbz-alaninal during two reaction cycles. In these conditions, an improved reaction yield and selectivity, together with a fourfold activity enhancement were observed, as compared to soluble RhuA.  相似文献   

15.
We report an enzymatic method to control the plasmon resonance absorbance of gold nanoparticle (AuNP) arrays assembled on hyaluronic acids. While multiple electrostatic interactions between cysteamine on the AuNPs and the carboxylic acid residues in the whole intact hyaluronic acid induced the formation of large aggregates, precise control of the plasmon absorbance was possible by tailoring the size of the bio-polymeric templates with hyaluronidase, almost over the entire range of the resonant coupling wavelengths. It was possible to precisely tune the position of the second plasmon absorbance by manipulating the amount of the template and the enzymatic hydrolysis time. Finally, we were able to produce a chain-like array of AuNPs, which was nearly one dimensional, with a maximum shift of up to 189 nm in the plasmon absorbance at the optimal hydrolysis time of the templates. This enzymatic method can be used as a useful tool to tailor the plasmonic properties of the nanostructures required for specific applications.  相似文献   

16.
A facile and green route was introduced to synthesize Au nanoparticles immobilized on halloysite nanotubes (AuNPs/HNTs) used for surface-enhanced Raman scattering substrates. The naturally occurring HNTs were firstly functionalized with a large amount of -NH(2) groups by N-(β-aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTES), which possesses one lone electron pair and will "anchor" Au ions to form a chelate complex. Then, with the addition of tea polyphenols (TP), the Au ions were reduced on the surface of the previously formed Au-NH(2) chelate complex to form AuNPs. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) observations indicate that a large amount of AuNPs were synthesized on HNTs. The AuNPs are irregularly spherical and densely dispersed on HNTs and the diameter of the nanoparticles varies from 20 to 40 nm. The interactions between AuNPs and -NH(2) groups were verified by X-ray photoelectron spectroscopy (XPS) and the results showed that the functional groups can "anchor" AuNPs through the chelating effect. The as-prepared AuNPs/HNTs nanomaterials with several nanometers gaps among nanoparticles were used as a unique surface-enhanced Raman scattering substrate, which possessed strong and distinctive Raman signals for R6G, indicating the remarkable enhancement effect of the AuNPs/HNTs.  相似文献   

17.
Gold nanoparticles (AuNPs) with 14, 25 and 40nm diameters were functionalized with different chain length (C6, C8, C11 and C16) carboxylic acid terminated alkanethiol self-assembled monolayers (COOH-SAMs). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to examine the changes in surface chemistry as both AuNP diameter and SAM chain length were varied. COOH-SAMs on flat gold surfaces were also examined and compared to the COOH-SAM on AuNP results. For a given surface, as the COOH-SAM chain length increased the XPS C/Au atomic ratio increased due to an increased number of carbon atoms per molecule in the overlayer and an increased attenuation of the Au substrate signal. For the C16 COOH-SAMs, as the size of AuNPs decreased the XPS C/Au atomic ratio and the apparent SAM thickness increased due to the increased curvature of the smaller AuNPs. The C16 COOH-SAMs on the flat Au had the lowest XPS C/Au atomic ratio and apparent SAM thickness of any C16 COOH-SAM covered Au surface. The effective take-off angles of the COOH-SAMs were also calculated by comparing the apparent thickness of COOH-SAMs with literature values. The effective take-off angle for C16 COOH-SAM on 14nm, 25nm and 40nm diameter AuNPs and flat Au were found to be 57°, 53°, 51° and 39°, respectively, for data acquired in a mode that collects a wide range of photoelectron take-off angles. The effective take-off angle for C16 COOH-SAM on 14nm AuNP and flat Au decreased to 52° and 0°, respectively, for data acquired in a mode that collects a narrow range of photoelectron take-off angles. The ToF-SIMS results showed similar changes in surface chemistry with COOH-SAM chain length and AuNP size. For example, the ratio of the sum of the C(1-4)H(x)O(y) positive ion intensities to the sum of the Au-containing positive ions intensities increased with decreasing AuNP size and increasing COOH-SAM chain length. Fourier transform IR spectroscopy in the attenuated total reflectance mode (FTIR-ATR) was used to characterize the crystallinity of the COOH-SAMs. The CH(2) stretching frequencies decreased with increasing COOH-SAM chain length on flat Au. The C16 COOH-SAM on the 14nm AuNPs exhibited a crystalline-like CH(2) stretching frequency. The size, size distribution, shapes and solution stability of AuNPs were investigated with transmission electron microscopy (TEM) and UV/VIS spectroscopy. As the average diameter of the AuNPs decreased the size distribution became narrower and the shape became more spherical.  相似文献   

18.
张晓丹  曹阳  贺军辉 《化学学报》2009,67(12):1277-1284
在溶液中以正己硫醇作稳定剂, 利用HAuCl4与HF处理后的硅纳米线(SiNWs)的氧化还原反应, 在SiNWs表面负载金纳米粒子(AuNPs). 通过调整HAuCl4的浓度, 得到了AuNPs粒径从3.2到7.0 nm的AuNPs/SiNWs复合结构, 并对这种复合结构进行了紫外-可见吸收光谱和荧光光谱研究. 紫外-可见吸收光谱研究表明, 负载不同粒径的AuNPs的SiNWs在530~580 nm间有明显的由AuNPs表面等离子体共振引起的吸收, 且随着AuNPs粒径的增加, 该吸收峰发生红移. 负载前后的荧光光谱表明, 在红光和绿光区负载AuNPs的SiNWs的荧光峰与HF处理后SiNWs的荧光峰峰形相当, 峰位变化不大; 但在蓝光区, 不同于HF处理前后SiNWs的发射峰(464 nm左右), 负载了AuNPs的SiNWs在423 nm的位置处出现了强荧光峰, 这个峰是AuNPs费米能级的电子与sp或d带的空穴辐射复合产生的.  相似文献   

19.
将金纳米粒子(AuNPs)标记的大肠杆菌O157∶H7(E.coli O157∶H7)的多克隆抗体(PAb)作为二抗,采用氨基偶联法将PAb固定在传感器表面作为一抗,通过三明治方法用双通道表面等离子体子共振(SPR)传感器对E.coli O157∶H7进行检测,并与SPR直接法检测进行了比较.结果表明,直接法的检出限为103cfu/mL,线性范围为103~109cfu/mL;AuNPs增强三明治法的检出限为10 cfu/mL,线性范围为10~1010cfu/mL,灵敏度比直接法提高了100倍,且具有更宽的检测范围.本方法不仅检测时间短,而且具有良好的选择性和重现性.  相似文献   

20.
AuNPs/PNIPAM复合颗粒的制备及其温敏性质   总被引:1,自引:0,他引:1  
将金纳米颗粒(AuNPs)组装到聚N-异丙基丙烯酰胺(PNIPAM)水凝胶微球表面制备出AuNPs/PNIPAM复合颗粒. 将PNIPAM 凝胶的温敏特性与AuNPs的光学性质结合, 通过改变温度调节AuNPs的局部表面等离子共振(LSPR)吸收峰位置. 研究结果表明, 温度升高使AuNPs的LSPR吸收峰发生红移, 并且这种效应是可逆的. 同时发现, AuNPs的光学性质还可以作为表征PNIPAM水凝胶微球温敏行为的一种手段. 利用透射电镜、紫外-可见光谱仪及动态光散射仪对AuNPs/PNIPAM复合颗粒的形貌、光学性质、粒径变化等进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号