首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曾可  方卯发 《中国物理》2005,14(10):2009-2013
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole--dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms--field, atom--atom, and atom--field can be prepared via two two-level atoms interacting with a single-mode vacuum field.  相似文献   

2.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

3.
钱懿  许晶波 《中国物理 B》2012,21(3):30305-030305
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

4.
刘小娟  方卯发 《中国物理》2003,12(9):971-976
We investigate the entanglement properties of the two-mode coherent fields interacting with a two-level atom via the two-photon transition. We discuss the quantum entanglement between the two-mode coherent fields and the two-level atom by using the quantum reduced entropy and that between the two-mode coherent fields by using the quantum relative entropy. We also examine the influences of the initial states of the atom and the two-mode coherent fields on the quantum entanglement of the system. Our results show that three types of entangled states can be prepared via the two-mode coherent fields interacting with a two-level atom and choosing appropriately the initial-state parameters of the system.  相似文献   

5.
利用两能级原子与腔场的相互作用转移纠缠   总被引:2,自引:2,他引:0  
分析了大失谐情况下一个两能级原子和相干态腔场相互作用的特点;讨论了利用两能级原子和相干态腔场相互作用制备纠缠相干态的方法;提出了一个关于纠缠相干态的纠缠转移的方案。在这个纠缠转移的方案里,通讯伙伴之间使用的量子信道是由两个振幅相同位相相反的相干态构成的纠缠态。通过使用两能级原子和腔肠相干态的相互作用和两模正交态测量并在经典信息的帮助下完成了三个通讯伙伴之间的纠缠转移。随着近来腔量子电动力学技术的发展,这个方案是能够被实行的。  相似文献   

6.
利用双光子过程耦合腔系统实现量子信息转移   总被引:2,自引:1,他引:1  
卢道明 《光学学报》2012,32(6):627001-231
给出了利用两个二能级原子和耦合腔双光子过程相互作用系统实现量子信息转移的方案。该方案中二能级原子通过双光子跃迁与单模腔场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子信息从一个原子转移到另一个原子。  相似文献   

7.
A set of very important simple quantum systems is analyzed from the standpoint of the amount of coherent information that is accessible when information channels corresponding to the systems are used. It is shown that for simple quantum models the coherent information can be calculated and used for estimating the potential possibilities of the corresponding quantum channel as a source of physical information in experiments associated with the effects of the coherence of quantum states. The following physical models are studied: a two-level atom in a laser radiation field, an aggregate of two two-level subsystems in a multilevel atom (hydrogen), a system of two two-level atoms in the process of joint quantum-deterministic evolution and under the action of transformations of quantum measurement and quantum duplication, as well as one and two two-level atoms in the process of emission.  相似文献   

8.
Dynamics of a system of two-level atoms interacting simultaneously with classical and quantized modes are analyzed. Both atom and cavity are assumed to interact with classical fields. The possibility of using this system as a quantum computer that solves the knapsack problem is discussed.  相似文献   

9.
In this article, a system of two two-level atoms interacting with a single-mode quantized electromagnetic field in a lossless resonant cavity via a multi-photon transition is considered. The quantum Fisher information, negativity, classical Fisher information, and reduced von Neumann entropy for the two atoms are investigated. We found that the number of photon transitions plays an important role in the dynamics of different information quantifiers in the cases of two symmetric and two asymmetric atoms. Our results show that there is a close relationship between the different quantifiers. Also, the quantum and classical Fisher information can be useful for studying the properties of quantum states which are important in quantum optics and information.  相似文献   

10.
An analysis of the Dicke model, N two-level atoms interacting with a single radiation mode, is done using the Holstein-Primakoff transformation. The main aim of the paper is to show that, changing the quantization axis with respect to the common usage, it is possible to prove a general result either for N or the coupling constant going to infinity for the exact solution of the model. This completes the analysis, known in the current literature, with respect to the same model in the limit of N and volume going to infinity, keeping the density constant. For the latter the proper axis of quantization is given by the Hamiltonian of the two-level atoms and for the former the proper axis of quantization is defined by the interaction. The relevance of this result relies on the observation that a general measurement apparatus acts using electromagnetic interaction and so, one can state that the thermodynamic limit is enough to grant the appearance of classical effects. Indeed, recent experimental results give first evidence that superposition states disappear interacting with an electromagnetic field having a large number of photons.  相似文献   

11.
A kinetic equation describing collective relaxation process in the dispersion limit is derived for an ensemble of two-level atoms placed in a cavity and interacting with one cavity mode. Multiatom entangled states belonging to the set of Dicke states and insensitive to collective decay are found. A scheme for recording, storing, and reading these states with participation of spatially multimode light is reported.  相似文献   

12.
An open quantum system, which consists of a “dressed” two-level atom, i.e., an atom interacting with a classical multifrequency field, and a single quantized mode of an electromagnetic field, is examined. It is shown that when the frequency of the quantized mode coincides with one of the transition frequencies between the quasienergy levels, two interaction mechanisms, which differ in the dynamics of the populations of the quasienergy states, can be realized. Zh. éksp. Teor. Fiz. 112, 818–827 (September 1997)  相似文献   

13.
The electromagnetic transitions of M?ssbauer nuclei provide almost ideal two-level systems to transfer quantum optical concepts into the regime of hard x-rays. If many identical atoms collectively interact with a resonant radiation field, one observes (quantum) optical properties that are strongly different from those of a single atom. The most prominent effect is the broadening of the resonance line known as collective enhancement, resulting from multiple scattering of real photons within the atomic ensemble. On the other hand, the exchange of virtual photons within the ensemble leads to a tiny energy shift of the resonance line, the collective Lamb shift, that remained experimentally elusive for a long time after its prediction. Here we illustrate how highly brilliant synchrotron radiation allows one to prepare superradiant states of excited M?ssbauer nuclei, an important condition for observation of the collective Lamb shift.  相似文献   

14.
The generalized Bloch equations (GBE) describing the temporal evolution of a single two-level atom interacting with a classical external field of arbitrary intensity and with a thermodynamic bath are obtained from the time convolutionless generalized master equation or equivalently from the Tokuyama-Mori identity. These GBE are then used to calculate the absorption spectrum of a single two-level atom with frequency modulated by dichotomic noise with time-dependent transition probability.  相似文献   

15.
In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.  相似文献   

16.
根据大失谐条件下原子-腔场相互作用的特点,讨论了一个制备纠缠压缩态的方法,提出了一个利用两能级原子与腔场相互作用实现纠缠压缩态纠缠浓缩的方案。在这个方案中,两束具有相同振幅但有着 相位差的压缩光 和 构成的纠缠态光场被用来作为量子信道。通过利用两能级原子与腔场的相互作用以及两模正交态测量实现了这个纠缠浓缩的过程。结果表明:对于纠缠压缩态,无论其初始的纠缠是多么微弱,利用这种方法总有一定的几率可以从部分纠缠态中提取出最大纠缠态。  相似文献   

17.
In this paper, we use the Green function method to determine the linear quantum mechanical susceptibilities of a single two-level atom and two two-level atoms located inside a coupled-resonator optical waveguide (CROW). We first calculate the susceptibility of a single atom in a CROW which has the same form as that of a single atom in free space, except for the modification of the atomic decay rate and the frequency shift. Then, we consider two non-identical, non-interacting two-level atoms inside two separate cavities of the CROW. We find that the susceptibility of this system contains not only the contributions of the two individual atoms, but also the contribution arising from the atom-atom correlation due to the CROW field. This additional contribution leads to an electromagnetically induced transparency-like (EIT-like) phenomenon. Furthermore, we find that the optical response of the atomic systems under consideration can be controlled by tuning the atomic transition frequency. Finally, we study the effects of the dissipation processes, i.e., the spontaneous emission of the atoms and the photon leakage from the CROW, on the optical susceptibility.  相似文献   

18.
We investigate the quantum interference induced by a relative phase in the correlated initial state of a system which consists in a two-level atom interacting with a damped mode of the radiation field. We show that the initial relative phase has significant effects on both the evolution of the atomic excited-state population and the information flow between the atom and the reservoir, as quantified by the trace distance. Furthermore, by considering two two-level atoms interacting with a common damped mode of the radiation field, we highlight how initial relative phases can affect the subsequent entanglement dynamics.  相似文献   

19.
This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose--Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms,parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser.  相似文献   

20.
赵建刚  孙长勇  孟祥国  苏杰 《物理学报》2009,58(10):6985-6991
在压缩真空态光场和二能级原子玻色-爱因斯坦凝聚体相互作用系统中, 应用全量子理论, 分别在旋波近似和非旋波近似下, 研究了原子激光的压缩特性以及原子本征频率、光场-原子的耦合系数、光场初始压缩因子以及虚光场对原子激光压缩特性的影响. 研究表明,原子激光的两个正交分量均可被周期性压缩,原子的本征频率决定了原子激光两个正交分量涨落的量子Rabi频率,光场与原子的耦合系数决定了原子激光正交分量涨落的崩塌-回复振荡频率,当光场初始压缩因子增大和考虑虚光场效应时,原子激光正交分量的压缩深度均加深. 关键词: 玻色-爱因斯坦凝聚 压缩真空态 原子激光 虚光场效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号