首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of spin-spiral and domain wall structures in an Fe monolayer on a W(1 1 0) substrate is theoretically investigated. By analyzing the exchange parameters obtained from first principles total energy calculations, we find that a competition between the nearest-neighbor ferromagnetic and long-distant antiferromagnetic exchange interactions leads to a stabilization of the spin-spiral structures. When the strong magnetocrystalline anisotropy (MCA) arising from the Fe/W(1 1 0) interface is introduced, however, the formation of the spin-spiral structures is suppressed and the ground state appears to be the ferromagnetic state—as observed in experiments. In addition, the strong MCA is found to play a key role in determining the domain wall structures.  相似文献   

2.
Effective anisotropy of the ferromagnetic pinned layer of ferro(FM)-antiferromagnetic (AF)-coupled NiFe(FM)/FeMn(AF) exchange-biased system was investigated in a broad frequency range (100 MHz-5 GHz) using a complex permeability spectrum. The exchange bias and effective uniaxial anisotropy fields of the thin film have been computed theoretically using the Landau-Lifschitz-Gilbert (LLG) equation. From the measurements, uniaxial anisotropy of the pinned FM layer has been extracted to understand the nature of the exchange bias in the system. It is found that the uniaxial anisotropy field of NiFe layer when exchange biased with the AF layer increases from 5 to 15 Oe at different external magnetic fields.  相似文献   

3.
High-frequency characteristics of CoFeVAlONb thin films were studied. A thin film of Co43.47Fe35.30V1.54Al5.55O9.93Nb4.21 is observed to exhibit excellent magnetic properties; magnetic coercivity of 1.24 Oe, uniaxial in-plane anisotropy field of 66.99 Oe, and saturation magnetization of 19.8 kG. The effective permeability of the film is as high as 1089 and is stable up to 1.8 GHz, and with ferromagnetic resonance over 3 GHz. This film also has very high electrical resistivity of about 628 μΩ cm. These superior properties make it ideal for high-frequency magnetic applications.  相似文献   

4.
The granular CuO films are deposited on n-Si (1 0 0) and sapphire substrates using sol-gel route. Small microstrain leads to ∼5 times larger grain sizes (200-300 nm) and ∼2.5 times larger film thickness (∼0.57 μm) for sapphire than n-Si substrate, which are confirmed by X-ray diffraction and Atomic Force Microscopy. A diode-like current-voltage characteristics are observed for film deposited on n-Si substrate, which is absent for sapphire substrate. Typical manifestation of ferromagnetic character is observed for CuO films, which are strongly influenced by the substrates. Magnetic anisotropy is larger for sapphire substrate than n-Si substrate. At room temperature considerably large magnetoconductance ∼21% and soft ferromagnetic character of CuO film on n-Si substrate are attractive for functional applications.  相似文献   

5.
We determine the minimal domain structure for the equilibrium thickness of stripes as well as for the minimal energy of the domain configuration in ultrathin films of ferromagnetically coupled spins, where the easy direction of magnetization is perpendicular to the film. It is found that the equilibrium thickness of stripes and walls depend on the exchange energy. The normalized anisotropy, f, depends on interplay between the magnetic and anisotropy energies and is almost independent of the exchange energy inside the wall. The results are compared with the experimental data for thin Ag/Fe/Ag (0 0 1) films and a good coincidence is obtained between both results.  相似文献   

6.
By extending the (1 + 1)-dimensional [(1 + 1)-D] perturbation method suggested by Ouyang et al. [S. Ouyang, Q. Guo, W. Hu, Phys. Rev. E. 74 (2006) 036622] to the (1 + 2)-D case, we obtain a fundamental soliton solution to the (1 + 2)-D nonlocal nonlinear Schrödinger equation (NNLSE) with a Gaussian-type response function for the sub-strongly nonlocal case. Numerical simulations show that the soliton solution obtained in this paper can describe the soliton states in both the sub-strongly nonlocal case and the strongly nonlocal case. It is found that the phase constant and the power of the (1 + 2)-D strongly nonlocal spatial optical soliton with a Gaussian-type response function are both in inverse proportion to the 4th power of its beam width.  相似文献   

7.
MnAs thin films were grown by metalorganic vapour-phase epitaxy (MOVPE) on GaAs(0 0 1), Si(0 0 1) and oxidised silicon substrates. All films are crystalline and contain only the ferromagnetic α-MnAs phase. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements show that films on GaAs(0 0 1) have strong preferential orientation, developing elongated grains parallel to [1 –1 0] GaAs while films on bare and oxidised Si are polycrystalline with irregular-shaped, randomly oriented grains. Magneto-optic Kerr effect (MOKE) measurements show good magnetic properties for films on GaAs, such as strong in-plane anisotropy and squareness of the hysteresis loop in the easy direction. A Curie temperature of 340 K, remarkably higher than the bulk material (315 K), was found for a 65 nm thick film on GaAs. Films grown on bare and oxidised silicon wafers had lower Curie temperature and were magnetically isotropic.  相似文献   

8.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

9.
Bilayers, TbFeCo/GdFeCoSi, made by sputtering on glass substrate with buffer and capping layers were studied by measuring the hysteresis loop and by ferromagnetic resonance (FMR). When the field H was applied along the film normal, a double HC hysteresis loop related to the two sublayers was observed. In ferromagnetic resonance measurements, a peculiar out-of-plane angular dependence of FMR spectrum was obtained. When scanning field H was 0-637 kA/m less than the anisotropy field of TbFeCo sublayer, two FMR peaks were observed. One peak was characteristic of uniaxial and unidirectional anisotropy. The anisotropy constants were obtained by fitting the data with the theory of FMR, and this peak was considered to be related to the low anisotropy GdFeCoSi layer. The second peak appeared only when the dc field H was orientated in a limited angular range around 180°. This peak was considered to be related to an uncoupled interfacial GdFeCoSi sublayer near Al capping layer. However, when H was scanned between 0-1114 kA/m, only one peak is observed due to magnetization reversal of TbFeCo layer with uniaxial anisotropy.  相似文献   

10.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

11.
12.
The nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer were investigated. The single beam Z-scan measurement showed the polymer film possessed a value of nonlinear refractive index n2 = −1.07 × 10−9 cm2/W under a picosecond 532 nm excitation. Photoinduced anisotropy in the polymer was studied through dichroism and photoinduced birefringence. A photoinduced birefringence value Δn ∼ 10−2 was achieved in the polymer film. The mechanism for the nonlinear optical response and the physical process of photoinduced anisotropy in the polymer were discussed.  相似文献   

13.
Permeability and its upper limitation frequency of superparamagnetic nanoparticle type magneto-dielectric hybrid material were theoretically and experimentally investigated. The Landau-Lifschitz-Gilbert equation without any interaction between nanoparticles revealed that the blocking resonance frequency was able to exceed the ferromagnetic resonance frequency originating from the intrinsic magnetocrystalline anisotropy field by decreasing particle size, resulting in ultra fast switching of superparamagnetic moment in GHz range. In the case of Fe nanoparticles, the blocking resonance frequency can be increased to 130 GHz by reducing particle size to 1 nm. The experiment results for Fe3O4 and Fe nanoparticle assemblies supported the validity of our calculation results. Thus, superparamagnetic nanoparticle assembly could be promising material for high frequency use over 10 GHz range.  相似文献   

14.
A high-quality ferromagnetic GaMnN (Mn=2.8 at%) film was deposited onto a GaN buffer/Al2O3(0 0 0 1) at 885 °C using the metal-organic chemical vapor deposition (MOCVD) process. The GaMnN film shows a highly c-axis-oriented hexagonal wurtzite structure, implying that Mn doping into GaN does not influence the crystallinity of the film. No Mn-related secondary phases were found in the GaMnN film by means of a high-flux X-ray diffraction analysis. The composition profiles of Ga, Mn, and N maintain nearly constant levels in depth profiles of the GaMnN film. The binding energy peak of the Mn 2p3/2 orbital was observed at 642.3 eV corresponding to the Mn (III) oxidation state of MnN. The presence of metallic Mn clusters (binding energy: 640.9 eV) in the GaMnN film was excluded. A broad yellow emission around 2.2 eV as well as a relatively weak near-band-edge emission at 3.39 eV was observed in a Mn-doped GaN film, while the undoped GaN film only shows a near-band-edge emission at 3.37 eV. The Mn-doped GaN film showed n-type semiconducting characteristics; the electron carrier concentration was 1.2×1021/cm3 and the resistivity was 3.9×10−3 Ω cm. Ferromagnetic hysteresis loops were observed at 300 K with a magnetic field parallel and perpendicular to the ab plane. The zero-field-cooled and field-cooled curves at temperatures ranging from 10 to 350 K strongly indicate that the GaMnN film is ferromagnetic at least up to 350 K. A coercive field of 250 Oe and effective magnetic moment of 0.0003 μB/Mn were obtained. The n-type semiconducting behavior plays a role in inducing ferromagnetism in the GaMnN film, and the observed ferromagnetism is appropriately explained by a double exchange mechanism.  相似文献   

15.
In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau–Lifschitz–Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation Js=μ0·Ms=1.4 T and in-plane uniaxial anisotropy μ0·Hu=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter αeff between 0.01 and 0.05 and ferromagnetic film thickness tm between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns.  相似文献   

16.
This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ?) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from −20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ?. It is established that, at high frequencies, the μ? of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ? in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.  相似文献   

17.
CrSb film was fabricated by pulse laser deposition (PLD) on Si (1 0 0) wafer. Strong ferromagnetism was observed in the CrSb film annealed at a high heating/cooling rate of 200 K/s, which can be attributed to the presence of ferromagnetic zinc blende (ZB) CrSb phase. The appearance of metastable ZB-CrSb results from the strong inner stress due to the precipitation of the monoclinic Sb.  相似文献   

18.
Square magnetic elements with side in the 100–500 nm range have been fabricated using the focused ion beam (FIB) milling technique from a 10 nm thick, single-crystal Fe film, epitaxially grown on MgO(0 0 1). Thanks to the good crystal quality of the film, magnetic elements with well-defined magnetocrystalline anisotropy have been prepared, while the fine control of the size and shape of the magnets allows for the effective engineering of the anisotropic behavior of the magnetostatic energy that determines the so-called configurational anisotropy. Micromagnetic calculations and experiments show that the angular dependence of the transverse susceptibility has a strong dependence on the material parameters as well as on the static applied field. This allows the effective engineering of the total anisotropy of the magnets.  相似文献   

19.
On the basis of numerical minimization of total energy in magnetic triaxial ferromagnetic films with a surface of a (1 1 0)-type, we investigated two-dimensional structures of domain walls within a rigorous micromagnetic approach that takes into account all the main interactions including the dipole–dipole one. Novel two-vortex and three-vortex domain wall structures are established to exist. The profiles of domain wall structures and their stability regions are studied.  相似文献   

20.
The uniaxial in-plane and out-of-plane anisotropies of [Co/SiO2] × 10 multilayers have been studied by ferromagnetic resonance, magnetometry and transmission electron microscopy. The surface and volume anisotropy constants are in the range of values typical for multilayers with Co and transition metals of the iron group. The influence of the intermixed Co-SiO2 region is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号