首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a systematic study of acoustic and non-acoustic properties of consolidated porous samples of expanded clay granulates. The effect of the particle size on the acoustic performance of consolidated expanded clays is investigated experimentally and theoretically. This work involves a comparison of the measured and predicted values of the absorption coefficient and normalised acoustic surface impedance data. It is demonstrated that the values of tortuosity and standard deviation in the pore size distribution do not depend significantly on the size of the material aggregate. An empirical expression which links the flow resistivity of the consolidated granular mix has been derived from the measured data. These results pave the way for the development of a simple practical model which will be able to link the acoustic properties of a consolidated granular mix with the characteristic particle dimension and the porosity data. These materials are structurally robust and easy to integrate in buildings and highway structures to control the levels of environmental noise and improve the acoustic quality of spaces.  相似文献   

2.
Perforated concrete shows nowadays a high potential for many construction and building engineering applications. This work is devoted to the analysis of the acoustic properties of perforated concrete made from arlite lightweight aggregates. Concrete produced from these materials is an environmentally friendly alternative to traditional materials and offers a higher durability, excellent strength-to-weight ratio and low cost. In particular, it is shown that the acoustic behavior of perforated concrete can be modeled using a dual porosity approach based on the knowledge of the non-acoustic properties of the matrix granular material and geometrical data. To this end, various non-perforated and perforated samples were prepared and characterized in an experimental test facility, their acoustic properties being determined through the transfer function impedance tube method. Experimental and estimated results related to the acoustic properties of a number of prepared specimens are presented, showing a good agreement. Results suggest that this approach is suitable for practical design of such materials as part of noise control systems.  相似文献   

3.
H.K. Kim 《Applied Acoustics》2010,71(7):607-615
The influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete is systematically investigated in the present study. Three levels of cement flow (80%, 110%, and 140%) and five types of aggregates (normal aggregates of 8-13 mm and 13-19 mm and lightweight aggregates of 4-8 mm, 8-12 mm, and 12-19 mm) are used, and effects of the application of AE admixtures in paste were also studied. Single-layered and double-layered porous concrete specimens are fabricated to examine the effect of different layer configuration on the acoustic characteristics. For the purpose of comparison, the void ratio, compressive strength, and sound absorption coefficient of the specimens are used as evaluation parameters. Based on the findings of the study, a sound absorbing porous concrete with a maximum absorption coefficient of approximately 1.00 is developed, and the minimum absorption coefficient of the ‘double-layered porous concrete’ structure is shown to be more than 0.60 with a frequency of 400 Hz or above, considering the tolerant error.  相似文献   

4.
An acoustic method for obtaining the tortuosity, and porosity of thick samples of rigid porous materials consisting of large (>1 mm) grains or fibres is proposed. The method uses pulses with central frequencies close to 12 kHz and an approximate bandwidth of between 3 and 20 kHz. In this frequency range, inertial rather than viscous or scattering effects dominate sound propagation in large pores. This allows application of the high frequency limit of the “equivalent fluid” model. Both reflected and transmitted signals are used in the measurements. Tortuosity is deduced from the high frequency limit of the phase speed (obtained from transmission data) and porosity is obtained from the high frequency limit of the reflection coefficient once the tortuosity is known. The method is shown to give good results in the cases where significant scattering does not occur until frequencies much higher than the upper limit of the pulse bandwidth. Apart from its applicability to samples with several centimetres thickness, the method needs only one set of measurements with the sample to deduce both tortuosity and porosity. In principle the method can be used also to estimate characteristic lengths. However, the errors are found to be larger and the results less consistent than for tortuosity.  相似文献   

5.
Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.  相似文献   

6.
This paper examines physical parameters of loose granular mixes and their empirical relations to the acoustic performance of these mixes. In this work a new classification of granular media has been proposed which is related to the characteristic particle dimension and the specific density of the grain base. It has been shown that this classification is a useful characteristic for rapid evaluation of the acoustic performance of loose granular mixes. The characteristic impedance and propagation constant have been measured for a representative selection of grain mixes and used to develop a new empirical model. This model relates the above acoustic characteristics to the characteristic particle dimension, porosity, tortuosity and specific density of the grain base, which are routinely measurable parameters. A very good agreement with the experimental data is illustrated in the frequency range of 250-4000 Hz for materials with the grain base of 0.4-3.5 mm and specific densities between 200 and 1200 kg/m3. Unlike many theoretical models for the prediction of the acoustic properties of porous media, the proposed expressions do not involve any special functions of complex argument, empirical shape factors or sophisticated characteristics of porous structure. These are practical enough to be of interest to acoustic and noise control engineers and material manufacturers.  相似文献   

7.
Modulus–porosity relationships are critical for engineered bone tissue scaffold materials such as hydroxyapatite (HA), where porosity is essential to biological function. Resonant ultrasound spectroscopy (RUS) measurements revealed that the Young's modulus, E, and shear modulus, G, of both alumina and HA decrease monotonically with increasing volume fraction porosity, P, for 0.06 < P < 0.39 (alumina) and 0.05 < P < 0.51 (HA). Although the elastic moduli of porous materials have been measured by a number of different ultrasonic resonance techniques (of which the RUS technique is one example) and over the last decade the elastic moduli of many solids have been measured by the RUS technique, this study is the first systematic RUS study of porous materials. Comparison of E versus P data for alumina (which has been studied extensively) with literature data from several measurement techniques indicates the RUS technique is effective for modulus–porosity measurements. Another key result is that although the HA specimens included in this study have a unimodal pore size distribution, the details of the decrease in E and G with increasing P agree well with literature data for HA with both unimodal and bimodal pore size distributions. In addition, Poisson's ratio exhibits a local minimum in the porosity range of 0.2 < P < 0.25 for both HA and alumina, which may be related to the pore morphology evolution during sintering.  相似文献   

8.
景奇  李晓娟 《物理学报》2019,68(5):57701-057701
在压电陶瓷中增加孔洞数量,可以有效改善陶瓷的静水压优值,提高其压电灵敏性.考虑到铅基压电陶瓷对环境和人体的危害,本文以糊精为造孔剂,采用传统固相烧结法制备无铅钛酸钡(BaTiO_3)多孔压电陶瓷.研究烧结温度(1250,1280,1300℃)和糊精含量(5%,10%,15%)对BaTiO_3陶瓷晶体结构、孔隙率以及孔形貌特征的影响,探索孔隙率与BaTiO_3陶瓷介电、压电、声阻抗以及静水压优值等性能之间的相关性.结果表明:所有多孔陶瓷表现出三维贯通的开气孔,尺寸约为1—7μm.烧结温度强烈影响BaTiO_3陶瓷的孔隙率,加入10%低沸点的糊精时,1250℃和1280℃烧结均获得孔隙率高达58%的多孔BaTiO_3陶瓷;然而1300℃烧结,陶瓷孔隙率急速下降到13%.1250℃烧结10%糊精含量的陶瓷表现出高的静水压优值(约8376×10~/(-15)Pa~(-1))和低的声阻抗(约2.84MRrayls(1Rayl=10Pa·s/m)).与1250℃相比,1280℃烧结的陶瓷晶粒之间的结合力明显增强,有利于提高陶瓷的力学强度.这些优异的性能预示着多孔钛酸钡陶瓷在传感器和水听器领域有着潜在的应用前景.  相似文献   

9.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

10.
Raman spectroscopy was used to study the preservation of the carbon nanotube structure in nanotube-reinforced alumina nanocomposites consolidated via spark plasma sintering (SPS). A series of Raman spectroscopy experiments was used to identify the thermal breakdown temperature of single-walled carbon nanotubes (SWCNTs) embedded in nanocrystalline alumina. It was found that the carbon nanotube structure remains intact after sintering at 1150 °C, but almost completely breaks down by 1350 °C after only 5 min. Also, 27Al nuclear magnetic resonance (NMR) was used to study the chemical and structural effects of high-energy ball milling (HEBM) and SPS consolidation on pure alumina and SWCNT-alumina nanocomposites. HEBM does not change the mixed coordination number of the as-received alumina, but slight peak shifts indicate residual stresses. No Al4C3 was detected in any of the consolidated samples – even up to 1550 °C for 10 min. Thus, it is concluded that consolidation of carbon nanotube-reinforced composites should be completed at temperatures below ∼1250 °C in order to preserve the carbon nanotube structure. PACS 61.18.Fs; 61.46.Fg; 61.82.Rx; 62.25.+g; 76.60.-k  相似文献   

11.
利用扫描电镜和原子力显微镜测量纳米微孔阳极氧化铝膜   总被引:5,自引:0,他引:5  
任刚  许如清  韩立  陈皓明 《物理》2003,32(1):36-41
利用多孔型阳极氧化铝膜(PAA)制备纳米材料是近年来研究的热点之,对PAA的形貌进行准确的表征具有重要的意义,文章首先分析了传统扫描电镜(SEM)观测方法中镀膜工艺对样品和测量结果的影响,并提出了对镀膜过渡区进行观测的方案,然后着重研究了利用原子力显微镜(AFM)对PAA进行无损测量的方法,比较了不同测量模式下的测量结果,并利用Reiss模型对“针尖-样品卷积效应”进行了有效的修正,文章的研究结果不仅适用于多孔型阳极氧化铝膜这一研究领域,对于纳米多孔材料的测量也有普遍的参考价值。  相似文献   

12.
13.
We report on experimental and theoretical investigations of the birefringence of free-standing nanoporous anodic alumina membranes in the optical range. The value of birefringence is analyzed for the samples with different porosities by measuring polarization dependent transmission spectra at different angles of incidence. The experimental data are compared to the results of birefringence simulations in accordance with the modified Bruggeman effective-medium approximation. It is both experimentally and theoretically shown that the birefringence value increases with porosity increases in the low porosity region. The porous alumina samples under investigation possess the greatest value of birefringence (0.062) up to the present. PACS 78.20.-e; 78.67-m; 78.20.Fm; 78.20.Ci  相似文献   

14.
在硅片上沉积厚二氧化硅的火焰水解法研究   总被引:6,自引:1,他引:5  
用火焰水解和高温烧结的方法在单晶硅基片上制备了厚SiO2和B2O2-P2O2-SiO2光波导包层材料。并用扫描电镜(SEM)和X射线粉末衍射(XRD)方法对其微观形貌和物相结构进行了观察和检测。重点对硅基片上沉积厚SiO2时的龟裂和析晶问题进行了深入研究。从扫描电镜照片可以看出.火焰水解法形成的SiO2粉末呈多孔的蜂窝状结构。这种粉末具有很高的比表面积,因而很容易烧结成玻璃。X射线衍射图谱表明.这种粉末是完全非晶态的。经过烧结以后,从扫描电镜照片可以明显看出硅基片上的SiO2薄膜出现龟裂。同时,X射线衍射测试结果表明有少量SiO2析晶。而通过在SiO2中掺入B2O3、P2O5,上述龟裂和析晶完全消失。用这种工艺制备的SiO2波导包层材料厚度达到20μm以上,表面光滑、没有龟裂,而且是完全玻璃态的,可以用于制备性能优良的各种硅基二氧化硅波导器件。  相似文献   

15.
Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.  相似文献   

16.
This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.  相似文献   

17.
The results of acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio are presented. To model the void texture of porous concrete, the multi-layered micro-perforated rigid panel model considering air gaps [1] and [2] is adopted. The parameters used in this acoustic absorption modeling are determined by a geometrical and experimental approach considering the gradation and shape of aggregates and void ratio. The predicted acoustic absorption spectra are compared with experimental results to verify the proposed acoustic absorption modeling approach. Finally, a parametric study is conducted to investigate the influence of design factors on the acoustic absorption properties of porous concrete.  相似文献   

18.
Using ultrasonic vibrations, we have successfully fabricated alumina nanotubes and nanowires from Al-based porous alumina membranes, which are the products of bulk aluminium in oxalic acid via electrochemical etching. Fine configurations and structures of the alumina nanotubes and nanowires are clearly revealed following a series of atomic force microscope and transmission electron microscope observations. Their formation mechanisms are analyzed in detail by comparing different growth characteristics of Al-based alumina membranes with Si-based alumina membranes. Based on our experimental results, we have also pointed out that when using porous alumina templates to fabricate nanostructured materials, it is necessary to carefully distinguish the obtained products from the alumina nanotubes and nanowires. PACS 82.45.Qr; 81.07.De  相似文献   

19.
The influence of the volumetric porosity of isotropic metal-matrix composite materials, which are reinforced with ceramic microparticles, on the dispersion of the phase velocity of longitudinal acoustic waves is investigated. For this purpose, the method of broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses is used. Composite samples based on a silumin matrix with added silicon carbide (SiC) microparticles in different mass concentrations (3.8–15.5%) were investigated. As the concentration of SiC particles in a sample increases, its porosity that is determined using the hydrostatic-weighing method also increases. The simultaneous increase in the filler concentration and porosity leads to the appearance of a dispersion of the phase velocity of longitudinal acoustic waves in the sample within the frequency range of 3–25 MHz. The obtained empirical relationship between the relative change in the phase velocity and the sample porosity can be used to obtain a proximate quantitative estimate of the bulk porosity of the isotropic metal-matrix composite materials.  相似文献   

20.
Simple empirical relations have been proposed to relate a limited number of directly measurable non-acoustic properties of an unconsolidated granular mix to its characteristic acoustic impedance and propagation constant. These properties are: characteristic particle dimension, porosity, tortuosity and the density of the grain base. It is believed that the model accounts heuristically for the mechanical friction between the elements of the rigid frame, the absorption in the frame micro-pores, and the degree of compaction. These effects can be important and are linked to the value of material density. This work presents practical applications of the proposed model for the prediction of the acoustic characteristics of hard-backed layers of loose granular mixes which can be used for acoustic absorption and insulation. It is shown that the predictions are in excellent agreement with the measured data for a representative range of loose granular mixes. A comparison of the results of the 4-parameter Attenborough model for the acoustic properties of porous media and the experimental data is made also. This model is used extensively to predict the acoustic properties of porous ground and granular media. The accuracy of this model with respect to loose granular materials is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号