首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a technique for blade damage detection based on spatial wavelet analysis. The wavelet transform is used to analyze spatially distributed signals (e.g. mode shape) of cracked thick rotating blades. First, a finite element model is applied to the vibration of a thick rotating blade with a single edge crack. The effects of transverse shear deformation and rotatory inertia are taken into account. Then the mode shapes of the cracked rotating blade are analyzed by wavelet transformation. The effects of crack locations and sizes on the wavelet coefficients are studied. It is found that the distributions of the wavelet coefficients can identify the crack position of the rotating blades by showing a peak at the position of the crack. Then the signals are analyzed by wavelet transform. It is found that the distributions of the wavelet coefficients can identify the crack position. Assumed measurement errors are added to nth mode shape for evaluating the effect of measurement errors on the capability of detecting crack position. The moving average method is used to process the data with assumed measurement errors. The crack positions can also be identified when there exist assumed measurement errors.  相似文献   

2.
In this paper, mode shapes of a cracked beam with a rectangular cross section beam are analysed using finite element method. The 3D beam element is applied for this finite element analysis. The influence of the coupling mechanism between horizontal bending and vertical bending vibrations due to the crack on the mode shapes is investigated. Due to the coupling mechanism the mode shapes of a beam change from plane curves to space curves. Thus, the existence of the crack can be detected based on the mode shapes: when the mode shapes are space curves there is a crack in the beam. Also, when there is a crack, the mode shapes have distortions or sharp changes at the crack position. Thus, the position of the crack can be determined as a position at which the mode shapes exhibit such distortions or sharp changes. While in previous studies using 2D beam element, distortions in the mode shapes caused by a small crack could not be detected, these distortions in the case using the 3D beam element can be amplified and inspected clearly by using the projections of the mode shapes on appropriate planes. The quantitative analysis is also implemented to relate the size and position of the crack with the observed coupled modes. These results can be applied for crack detection of a beam. In this paper, the stiffness matrix of a cracked element obtained from fracture mechanics is presented and numerical simulations of three case studies are provided.  相似文献   

3.
Mode shapes (MSs) have been extensively used to detect structural damage. This paper presents two new non-model-based methods that use measured MSs to identify embedded horizontal cracks in beams. The proposed methods do not require any a priori information of associated undamaged beams, if the beams are geometrically smooth and made of materials that have no stiffness discontinuities. Curvatures and continuous wavelet transforms (CWTs) of differences between a measured MS of a damaged beam and that from a polynomial that fits the MS of the damaged beam are processed to yield a curvature damage index (CDI) and a CWT damage index (CWTDI), respectively, at each measurement point. It is shown that the MS from the polynomial fit can well approximate the measured MS and associated curvature MS of the undamaged beam, provided that the measured MS of the damaged beam is extended beyond boundaries of the beam and the order of the polynomial is properly chosen. The proposed CDIs of a measured MS are presented with multiple resolutions to alleviate adverse effects caused by measurement noise, and cracks can be identified by locating their tips near regions with high values of the CDIs. It is shown that the CWT of a measured MS with the n-th-order Gaussian wavelet function has a shape resembling that of the n-th-order derivative of the MS. The crack tips can also be located using the CWTs of the aforementioned MS differences with second- and third-order Gaussian wavelet functions near peaks and valleys of the resulting CWTDIs, respectively, which are presented with multiple scales. A uniform acrylonitrile butadiene styrene (ABS) cantilever beam with an embedded horizontal crack was constructed to experimentally validate the proposed methods. The elastic modulus of the ABS was determined using experimental modal analysis and model updating. Non-contact operational modal analysis using acoustic excitations and measurements by two laser vibrometers was performed to measure the natural frequencies and MSs of the ABS cantilever beam, and the results compare well with those from the finite element method. Numerical and experimental crack identification can successfully identify the crack by locating its tips.  相似文献   

4.
In this paper, a method of crack detection in beam is provided by wavelet analysis of transient flexural wave. Firstly, we introduce a rotational spring in the cracked-beam model, and calculate the transient flexural wave propagation by the Reverberation Matrix Method. Secondly, at any point in this beam, the arrival time of waves with different group velocities can be identified by means of analysis of wavelet transform. From the signal of mid-frequency flexural wave extracted by wavelet transform, we can exactly determine the existence and position of crack in the beam. Here, a similar experiment is also produced to test the transient strain signal in beam, and the result after wavelet transform analysis is shown in accord with the theoretical one. Therefore, a powerful method is proved by the theoretical and experimental studies on the cracked beam, which can detect the crack accurately utilizing the wavelet analysis of the mid-frequency flexural wave.  相似文献   

5.
A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.  相似文献   

6.
A direct estimation method for expanding incomplete experimental mode shapes is presented. The approach adopts a hybrid vector which includes measured data at master degrees of freedom (dofs) and constant values at slave dofs. The constant values are refined by a set of mode-correction factors. Modelling errors between the analytical model and tested structure are also considered by introducing a series of model-correction factors. Initial-guess values of the mode-correction factors are used to decouple the coupled constructed equations, and an iterative technique for solving these equations is proposed. The results from a five-degree-of-freedom mass–spring system indicate that the proposed approach provided a better performance than the commonly used existing expansion methods and can reliably estimate unmeasured components of mode shapes, even in cases with limited modal measurements and severe measurement noise. The performance of the proposed method was also investigated using real measurements from a steel cantilever-beam experiment. Experimental data were measured by 20 accelerometers mounted at the cantilever beam: among these accelerometers, three of these were assumed to be measured, and the others were used to check the estimation accuracy of the proposed method. The results show that the unmeasured components in the mode shapes were properly estimated by implementing the proposed method, even for high-frequency modes.  相似文献   

7.
The governing differential equations and the general time-dependent elastic boundary conditions for the coupled bending-bending forced vibration of a pretwisted non-uniform Timoshenko beam are derived by Hamilton's principle. By introducing a general change of dependent variable with shifting functions, the original system is transformed into a system composed of four non-homogeneous governing differential equations and eight homogeneous boundary conditions. The transformed system is proved to be self-adjoint. Consequently, the method of separation of variables can be used to solve the transformed problem. The physical meanings of these shifting functions are explored. The orthogonality condition for the eigenfunctions of a pretwisted non-uniform beam with elastic boundary conditions is also derived. The relation between the shifting functions and the stiffness matrix is derived. The boundary control of a pretwist Timoshenko beam is studied. The effects of the total pretwist angle, the position of loading and the boundary spring constants on the energy required to control the performance of a pretwisted beam are investigated.  相似文献   

8.
This paper describes a procedure for detecting structural damage based on a micro-genetic algorithm using incomplete and noisy modal test data. As the number of sensors used to measure modal data is normally small when compared with the degrees of freedom of the finite element model of the structure, the incomplete mode shape data are first expanded to match with all degrees of freedom of the finite element model under consideration. The elemental energy quotient difference is then employed to locate the damage domain approximately. Finally, a micro-genetic algorithm is used to quantify the damage extent by minimizing the errors between the measured data and numerical results. The process may be either of single-level or implemented through two-level search strategies. The study has covered the use of frequencies only and the combined use of both frequencies and mode shapes. The proposed method is applied to a single-span simply supported beam and a three-span continuous beam with multiple damage locations. In the study, the modal test data are simulated numerically using the finite element method. The measurement errors of modal data are simulated by superimposing random noise with appropriate magnitudes. The effectiveness of using frequencies and both frequencies and mode shapes as the data for quantification of damage extent are examined. The effects of incomplete and noisy modal test data on the accuracy of damage detection are also discussed.  相似文献   

9.
The analytical investigation of vibration of damaged structures is a complicated problem. This problem may be simplified if a structure can be represented in the form of a beam with corresponding boundary and loading conditions. In this connection, free vibrations of an elastic cantilever Bernoulli-Euler beam with a closing edge transverse crack is considered in the present work as a model of a structure with a fatigue crack. The modelling of bending vibrations of a beam with a closing crack is realized based on the solutions for an intact beam and for a beam with an open crack. The algorithm of consecutive (cycle-by-cycle) calculation of beam mode shapes amplitudes is presented. It is shown that at the instant of crack opening and closing, the growth of the so-called concomitant mode shapes which differ from the initially given mode shape takes place. Moreover, each of the half-cycles is characterized by a non-recurrent set of amplitudes of concomitant modes of vibration and these amplitudes are heavily dependent on the crack depth.The vibration characteristics of damage based on the estimation of non-linear distortions of the displacement, acceleration and strain waves of a cracked beam are investigated, and the comparative evaluation of their sensitivity is carried out.  相似文献   

10.
The author has discovered several errors which are not typographical in the frequency equations for a Timoshenko beam clamped at both ends by Huang who presented the frequency equations and normal mode equations for all six common types of simple, finite beams in closed form for the first time. The exact frequency equations in closed form for Timoshenko beams clamped at both ends are derived based on his analysis. And then in order to justify the amended solutions of Huang, two versions of the closed form exact method and the Ritz method are applied. The frequency equations by the previous researcher present frequencies for only the flexural modes, while the closed form exact method and the Ritz method give ones for the thickness–shear modes as well as the bending modes. The purpose of the present study is to reveal the errors, correct them, and give some numerical results.  相似文献   

11.
Timoshenko beam theory is applied to the study of the free vibrations of skirt supported pressure vessels in this paper; such systems are used in the process and power generation industries as well as aboard nuclear powered vessels. It is shown that the analysis is not significantly more complicated than the analysis of skirt-vessel combinations by Euler-Bernoulli beam theory. This latter analysis is provided in an appendix. Two sets of boundary conditions are considered: namely, the cases of (a) a cantilevered system and (b) a fixed-pinned system. The first two natural frequencies of nine typical cases are calculated and compared with the corresponding results obtained from Euler-Bernoulli beam theory. The numerical differences are significant so that if a beam theory is adequate to model the system, it is clear that Timoshenko beam theory is the appropriate one to use. In addition, the first two mode shapes for a particular case are presented for comparison with the corresponding mode shapes predicted by Euler-Bernoulli beam theory. Finally, some comments on the modeling and analysis of specific, real systems are made. It is emphasized that the purpose of the paper is to demonstrate that Timoshenko beam theory is not unduly difficult to apply to problems of engineering interest when a beam theory model is suitable.  相似文献   

12.
The flexural vibration of the fluid-conveying single-walled carbon nanotube (SWCNT) is derived by the Timoshenko beam model, including rotary inertia and transverse shear deformation. The effects of the flow velocity and the aspect ratio of length to diameter on the vibration frequency and mode shape of the SWCNT are analyzed. Results show that the effects of rotary inertia and transverse shear deformation result in a reduction of the vibration frequencies, especially for higher modes of vibration and short nanotubes. The frequency is also compared with the previous study based on Euler beam model. In addition, if the ratio of length to diameter increased to 60, the influence of the shear deformation and rotary inertia on the mode shape and the resonant frequencies can be neglected. However, the influence is very obvious when the ratio decreased to 20. As the flow velocity of the fluid increases in the vicinity of 2π, the SWCNT reveals the divergence instability. It regains stability when the flow velocity reaches about 9. As the velocity increases further, the SWCNT undergoes a coupled-mode flutter and results in a larger amplitude.  相似文献   

13.
The dynamic stiffness method is the exact method for the dynamic analysis of plane frames using the continuous-coordinate system to consider the effect of mass distribution in beam elements. The dynamic stiffness method may create some null modes where the joints of beam element have null deformation. Unlike the Bernoulli–Euler frames, adding an interior node at the middle of the beam elements cannot normalize all the null modes of flexural vibration in the Timoshenko frames. The floating interior-node scheme is proposed to eliminate the null modes of flexural vibration in the Timoshenko frames. Orthogonal properties of vibration modes in Timoshenko plane frames are theoretically derived, through which the equations of motion in beam elements can be transformed into the decoupled equations of motion in terms of mode amplitudes.  相似文献   

14.
The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multispan Timoshenko beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring–mass systems. First, the coefficient matrices for an intermediate pinned support, an intermediate concentrated element, left- and right-end support of a Timoshenko beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of in-span pinned supports and various concentrated elements on the dynamic characteristics of the Timoshenko beam are also studied.  相似文献   

15.
With the development of optical measurement techniques it is possible to obtain vast amounts of data. In vibrometry applications in particular operational deflection shapes are often obtained with very high spatial resolution. Fortunately, many techniques exist to reduce (approximate) the measurement data. One of the most common techniques for evaluating optical measurement data is by means of a Fourier analysis. However, this technique suffers from what is known as leakage when a non-integer number of periods is considered. This gives rise to non-negligible errors, which will obviously hamper the accuracy of the synthesized shape. Another technique such as a discrete cosine transform, used in the widely spread -jpeg standard does not suffer these anomalies but can still prove erroneous at times. One of the more recent approaches is via a so-called regressive discrete Fourier series (introduced by Arruda) which suffers one disadvantage. The problem statement is nonlinear in the parameters and needs a priori information about the deflection shape. This can be resolved by using the optimized regressive discrete fourier series (ORDFS), introduced in this article, which uses a nonlinear least squares approach. In this article the method will be applied in particular to the reduction of data for laser vibrometer measurements performed on an inorganic phosphate cement (IPC) beam (1D), as well as on a car door (2D). The proposed technique will also be validated on simulations to illustrate the properties concerning compression ratio and synthesized mode shape error. The introduced method will be bench marked for compression ratio and synthesized deflection shape error with all prior mentioned techniques.  相似文献   

16.
李勤  何小中  蒋薇  杨治勇  刘云龙 《强激光与粒子束》2023,35(3):034002-1-034002-7
从强流脉冲电子直线感应加速器电子束流位置探测器测量原理出发,进行了标定装置物理设计,确定标定装置采用同轴结构,对束流探测器位置测量精度和测量范围、偏心同轴线对位置标定结果的影响进行了理论分析,并根据分析结果确定同轴结构内外导体相对位置调节范围、同轴线长度和特性阻抗。电路模拟和实验测量结果验证了在非匹配传输条件下可以得到满足位置标定要求的快脉冲信号波形。  相似文献   

17.
The paper proposes an evaluation technique for the elastic modulus of a cantilever beam by vibration analysis based on time average electronic speckle pattern interferometry (TA-ESPI) and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of a thin film are the Nano indentation test, Buldge test, Micro-tensile test, and so on. They each have strength and weakness in the preparation of the test specimen and the analysis of experimental results. ESPI is a type of laser speckle interferometry technique offering non-contact, high-resolution and whole-field measurement. The technique is a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI can be used to find the resonance frequency for each vibration mode shape. And the elastic modules of a test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique can be used to find the elastic modulus of a material requiring simple preparation process and analysis.  相似文献   

18.
A technique is developed to identify in-situ the tensile force in tie-rods which are used in ancient monumental masonry buildings to eliminate the lateral load exercised by the vaults and arcs. The technique is based on a frequency-based identification method that allows to minimize the measurement error and that is of simple execution. In particular, the first natural frequencies of the tie-rods are experimentally identified by measuring the frequency response functions (FRFs) with instrumented hammer excitation; four to six natural frequencies can be easily identified with a simple test. Then, a numerical model, based on the Rayleigh-Ritz method, is developed for the axially loaded tie-rod by using the Timoshenko beam theory retaining shear deformation and rotary inertia. Non-uniform section of the rod is considered since this is often the case for hand-made tie-rods in old buildings. The part of the tie-rod inserted inside the masonry wall is also modeled and a simple support is assumed at the extremities inside the walls. The constraints given to the part of the tie-rod inserted inside the masonry structure are assumed to be elastic foundations. The tensile force and the stiffness of the foundation are the unknowns. In some cases, the length of the rod inside the masonry wall can be also assumed as unknown. The numerical model is used to calculate the natural frequencies for a given set of unknowns. Then, a weighted difference between the calculated and identified natural frequencies is calculated and this difference is minimized in order to identify the unknowns, and in particular the tensile force. An estimation of the error in the identification of the force is given. The technique has been tested on five tie-rods at the ground floor of the famous castle of Fontanellato, Italy.  相似文献   

19.
The theoretical analysis of the DC K-modulation of quadrupole for the beam-based alignment method is presented. It is shown that the shift of the orbit,when the focussing strength of one quadrupole magnet is changed,can be described by the perturbed or unperturbed linear lattice parameters. The beam-based alignment system is constructed using DC K-modulation of quadrupole. In order to use the beam-based alignment method one must be able to individually adjust the strength of the quadrupole magnet. So,a switchable shunt resistor is installed on quadrupole to bypass 1%-2.5% magnet current and some solid-state relays are used to switch the shunt resistor in this beam-based alignment system. To improve the measurement accuracy,two methods are used. First method is that beam positions in measured quadrupole magnet are moved by local bump of beam closed orbit using the corrector magnets. Second method is that the root-mean-square of difference in closed orbit is fitted by a parabola function. The system can be not only used to position the beam in the magnetic center of quadrupoles,but also to measure the β function in quadrupole magnets. Some preliminary measurement results are given for Hefei 800MeV electron storage ring. These experimental results show that this system is valid to position the beam to the center of the quadrupole magnets and measure the β function at Hefei Light Source.  相似文献   

20.
Free vibration of functionally graded beams with a through-width delamination is investigated.It is assumed that the material property is varied in the thickness direction as power law functions and a single through-width delamination is located parallel to the beam axis.The beam is subdivided into three regions and four elements.Governing equations of the beam segments are derived based on the Timoshenko beam theory and the assumption of‘constrained mode’.By using the differential quadrature element method to solve the eigenvalue problem of ordinary differential equations governing the free vibration,numerical results for the natural frequencies of the beam are obtained.Natural frequencies of delaminated FGM beam with clamped ends are presented.Effects of parameters of the material gradients,the size and location of delamination on the natural frequency are examined in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号