首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nickel-based coatings are potential candidates for the protection of electrochemical dissolution of steel surfaces. Such coatings, elaborated by magnetron sputtering in a nitrogen atmosphere, offer good corrosion protection, good adherence as well as stability for metallic structures. NiCr alloys with almost constant composition have been deposited with different nitrogen contents on stainless steel and carbon steel surfaces. The coating uniformity, homogeneity, composition and crystallinity have been studied by scanning electron microscopy, energy-dispersive X-ray spectrometry, atomic force microscopy and X-ray diffraction techniques. The corrosion degradation behavior of all the samples was tested in NaCl and NaCl and CO2 mixture exposures using electrochemical impedance spectroscopy measurements. Nitrided NiCr alloys on a stainless steel substrate resulted with better adhesion than carbon steel, by delaying the corrosion mechanism when exposed to NaCl and CO2 solution. A comparison of the corrosion resistive behavior of the substrates (stainless steel, carbon steel) and the coatings is made by using the electrical capacitance concept from a double-layer model for the coating–metal interface.  相似文献   

2.
The influence of ion-plasma coatings made from high-hardness metal compounds on the erosion and corrosion resistance and mechanical properties of the alloy (substrate) + coating system is studied. The influence of the thickness, composition, and design of coatings based on metal nitrides and carbides on the relative gas-abrasive wear resistance of alloy+coating compositions in a gas-abrasive flux of quartz sand is discussed. It is shown that the zirconium nitride coating provides the best protection for compressor blades made of titanium alloys, without any decrease in fatigue resistance of the alloys, and chromium carbide coating is the most appropriate protection for steel compressor blades.  相似文献   

3.
自由体积与亲水性对环氧涂层防护性能的影响   总被引:5,自引:1,他引:5  
报道了涂层聚合物自由体积和亲水性对涂层腐蚀防护性能影响的初步研究结果.实验表明,相对于自由体积,树脂的亲水性是决定树脂吸水率的更主要因素.低亲水性涂层腐蚀防护性能的提高主要源自到达涂层/金属界面的水量的显著降低.但由于采用活性酯固化的环氧树脂涂层中水通道的尺寸相对较大,水合离子扩散较容易,因此该类涂层覆盖下的金属基体被润湿部分的腐蚀趋势反而较一般涂层为大.  相似文献   

4.
The effect of zirconia and zirconia-polyester glycol hybrid coatings on the corrosion resistance of mechanically polished or anodized AISI 316 stainless steel (316L), was studied by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.1 M NaCl and scanning electron microscope and atomic force microscopy examinations. The deposition of zirconia coatings was achieved by the sol–gel technique by immersing the samples in either the inorganic polymer or the organic–inorganic polymer mixture. From potentiodynamic and impedance measurements, the grade of protection is reduced with the exposure time to the electrolyte, which is mainly associated with lost of film adhesion and, consequently, detachment from the metal substrate. However, the uncoated anodized sample revealed an unexpected corrosion behavior; the anodic film formed during anodizing readily increased the corrosion resistance of the 316L stainless steel in 0.1 M NaCl, revealing a considerable reduction in the corrosion current density and an increase in the pitting potential.  相似文献   

5.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) and polystyrene (PS) blend coatings on the corrosion inhibition of stainless steel in a 0.5 M NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. Stainless steel electrodes with mirror finish were coated with P3OT/PS blend by drop-casting technique. In order to study the temperature effect on the function like physical barrier against the corrosive species of P3OT/PS polymeric blend, the coatings were thermally annealed at three different temperatures (55?°C, 80?°C, and 100?°C). The corrosion behavior of P3OT/PS-coated stainless steel was investigated in 0.5 M NaCl at room temperature, by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy. The LPR values indicated that, at 100?°C, P3OT/PS coatings showed a better protection of the 304 stainless steel in 0.5 M NaCl; the corrosion rate diminished in two orders of magnitude with regard to the bare stainless steel. The superficial morphology of the coatings before and after the corrosive environment was researched by atomic force microscopy, optic microscopy, and scanning electronic microscopy. Morphological study showed that the increased temperature benefited the integration of the two polymeric phases, which improved the barrier properties of the coatings. The coating/metal adhesion and the coating thickness were evaluated. The temperature increases the adhesion degree coating/substrate; thus, the coating annealed at 100?°C showed the best adhesion.  相似文献   

6.
The method of electrochemical impedance spectroscopy (EIS) was applied to investigate the behaviour of a thin intrinsically conducting polymer film (ICP) deposited on a metal substrate. Especially the conductivity, the redox properties, the anion release properties, and the corrosion protection of a coating with and without ICP film on an iron or steel substrate were studied. Combined with other electrochemical methods, the reactions taking place at an injured surface area of the coated iron were studied. The corrosion protection mechanism of polythiophene could be explained.  相似文献   

7.
Protective Properties of a Sol-Gel Coating on Zinc Coated Steel   总被引:3,自引:0,他引:3  
Galvanised and galvannealed steels are widely used due to their good corrosion resistance in aqueous solutions. However, when additional protection is required, organic coatings, corrosion inhibitors or conversion coatings are used to improve their corrosion protection. In this work, sol-gel coating was used to improve the corrosion behaviour of these two materials. This paper analyses the final protective properties of a sol-gel coating prepared by basic catalysis and its dependence on the sintering temperature and time of treatment. The influence of the sintering conditions on the galvanised and galvannealed substrates is a decisive factor for the coating quality and for the barrier affect against the aggressive media. While heat treatment time is the controlling factor for the galvannealed steels, the temperature is determining in the case of the galvanised. Corrosion mechanisms for sol-gel galvanised steels did not changed with respect to the uncoated steel. However for galvannealed steel, after coating the mechanism is not purely cathodic.  相似文献   

8.
AISI 304 Stainless Steel is widely used in different industrial fields because of its mechanical and corrosion properties. However, its tendency to corrosion in presence of halide ions limits the applications. One strategy to improve the corrosion resistance is the use of coatings barriers containing corrosion inhibitors in their formulation. The lanthanides present attractive green and corrosion properties for the substitution of chromates, which are the most common substances used as corrosion protection. However, these compounds are highly toxic, and an intense effort is being undertaken to replace them. Cerium is a good alternative because of its relatively low cost and abundance. It fulfils the basics requirements for being considered an alternative inhibitor: the ions form insoluble hydroxides and they present low toxicity. Inorganic and hybrid sol-gel coatings have been developed to increase the corrosion resistance of metals and they provide an excellent vehicle for the incorporation of secondary phases including particles and metal ions as cerium ions. The aim of this work was to study the influence of the incorporation of cerium ions in hybrid silica sol-gel coatings deposited on AISI 304 stainless steel as substrate as a potential replacement of chromate treatments. This system should combine the barrier protection effect of silica coating with the corrosion inhibitor effect of the cerium ions inside the coatings. After 7 days of immersion in NaCl, coated substrates showed lower current densities than the bare steel, although the coatings produced from Ce (III) salts experience a slight weakening in time and those obtained from Ce (IV) chemicals evidence an enhance in the coating performance, probably due to the plugging of corrosion products in the defective areas of the film.  相似文献   

9.
Advancements in the area of conducting polymers have been towards their application as effective corrosion protective coatings to replace the use of heavy metals as additives in the coatings industries, which are now considered to be an environmental as well as health hazard. With the aim to utilize a sustainable resource based polymer for the development of an anti‐corrosive conducting coating material, coconut oil based conducting blend coatings of polyaniline and poly(esteramide urethane) were prepared by loading different ratios (2, 4 and 8 wt%) of polyaniline in poly(esteramide urethane). Then their physico‐chemical, thermal, morphological, conductivity and anti‐corrosive coating characteristics were investigated. The effect of a 2 year environmental aging process on the coated samples was analyzed by thermal methods as well as by corrosion studies. Results showed that the corrosion protective performance of the blend coatings was far superior than that of plane poly(esteramide urethane). These coatings showed enhanced corrosion protection in acid as well as alkaline environments upto 360 and 192 hr respectively. Conductivity of the blends was found to be in the range 2.5 × 10?5–5.7 × 10?4 S/cm?1. An increase in the thermal stability of the blend coatings and a decrease in their conductivity was noticed in the aged samples which was attributed to the crosslinking effect. The corrosion protective performance of the coatings remained almost unaffected even after 2 years of aging. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This is an overview of polymer coating technology, which is a way for altering surface properties to meet performance requirement in variety of technical applications. Polymer coatings have been utilized for purposes of adhesion, barrier properties, scratch and abrasion resistance, chemical resistance, wettability, biocompatibility, etc. Different approaches have been developed and adopted for fabrication of protective organic coatings. A judicious choice of polymer, coating technique, and fabrication parameters may lead to high performance coatings with upgraded properties. Recently, polymer coatings have been successfully and frequently adopted for solar cell, lithium-sulfur batteries, membrane technology, Light-Emitting Diode, corrosion protection, packaging, and biomedical.  相似文献   

11.
Zn–Cr alloyed coatings electrochemically deposited are of high interest for leading steel manufacturing companies because of their novel properties and high corrosion resistance compared with conventional Zn coatings on steel. For tuning and optimizing the properties of the electrodeposited Zn–Cr coatings, a broad range of the deposition conditions must be studied. For this reason, two different types of material were investigated in this study, one with a low electrolyte temperature and one with an elevated electrolyte pH, compared with the standard values. Because different corrosion performance and delamination behaviour of the layers were observed for the two types, advanced surface analysis was conducted to understand the origin of this behaviour and to discover differences in the formation of the coatings. The topmost surface, the shallow subsurface region, and the whole bulk down to the coating–steel interface surface were analysed in detail by X-ray photoelectron spectroscopy (XPS) and high-resolution scanning Auger electron spectroscopy to determine the elemental and the chemical composition. For better understanding of the resulting layer structure, multiple reference samples and materials were measured and their Auger and XPS spectra were fitted to the experimental data. The results showed that one coating type is composed of metallic Zn and Cr, with oxide residing only on the surface and interface, whereas the other type contains significant amounts of Zn and Cr oxides throughout the whole coating thickness.  相似文献   

12.
There is a current need for alternative coatings that can provide corrosion resistance to metals or alloy surfaces due to the environmental hazards posed by conventional coatings. Herein, we report on novel organically-modified sol–gel coatings for the protection of metal and alloy surfaces. The basic concept of chemical conversion of metal surfaces is based on deposition of a hydrophobic, nonporous sol–gel barrier layer for surface protection and corrosion prevention. The properties of these organosilica coatings can be tuned by varying the composition of precursors. The evaluation of hydrophobicity, adhesive strength, and anticorrosion properties of organically-modified sol–gel derived coatings suggests their potential utility as technologically-compatible alternatives to conventional coatings.  相似文献   

13.
Electroless deposition of Ni–Zn–P thin film was considered as a barrier film on a galvanic Zn or Ni–Zn sacrificial layer in a multicomponent corrosion protective coating on steel. The incorporation of zinc on the chemical composition of electroless Ni–Zn–P coating was studied. The effect of operating conditions such as temperature, pH value and concentration of zinc sulphate was investigated. Some physical characteristics such as morphology, structure, corrosion properties of Ni–Zn–P coatings were assessed in parallel with those of Ni–P. Inclusion of Zn to Ni–P is accompanied by the transformation of the coating structure from amorphous to crystalline. The effect of adding nonionic surfactant to the plating solution on the composition and surface morphologies was also investigated. The results indicate that nonionic surfactant has no effect on the Zn % in the deposit layer, but it affects the surface morphology and improves the corrosion resistance of Ni–Zn–P layers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The corrosion behavior in artificial seawater of different as-sprayed ceramic-metallic (cermet) coatings applied on low-alloy steel was studied. Five conditions, associated to modifications of the composition of the powder or deposition parameters were evaluated. The degradation mechanisms were studied during extended immersion tests using conventional electrochemical measurement and electrochemical impedance spectroscopy. The extended immersion tests reveal that these as-thermal-sprayed coatings present a cathodic behavior compared with steel. During the first hours of immersion, the electrolyte infiltrates the defects of the coatings, which then result to the local degradation of the substrate accelerated by the galvanic coupling with the cermet coating. Optical observations and Raman analyses reveal the formation of calcium carbonates like aragonite on the cermet surface, very close to the appearance of local anodic sites. The cross-sectioned views reveal the infiltration of the corrosive solution, and the depth penetration of the degradation of steel substrate probably due to the acidification of the anodic sites.  相似文献   

15.
Sol-Gel Coatings on Metals   总被引:4,自引:0,他引:4  
Sol-gel derived films can be deposited on metals to improve their resistance to oxidation and corrosion or to modify their surface properties. However, practical applications are limited by problems intrinsic to sol-gel processing or specific of coating/metal systems. Coatings aimed to improve oxidation and wet corrosion resistance have been the most studied. The results published in the literature show that sol-gel coatings may offer good protection against oxidation. More difficult is to achieve a protection against wet corrosion. An important aspect of the application of the sol-gel method for coating metallic objects is also the deposition technique.  相似文献   

16.
WBE联合EIS技术研究缺陷涂层下金属腐蚀   总被引:2,自引:0,他引:2  
张伟  王佳  李玉楠  王伟 《物理化学学报》2010,26(11):2941-2950
用电化学阻抗谱(EIS)结合丝束电极(WBE)技术研究了缺陷涂层浸泡在3.5%(质量分数)NaCl溶液中的劣化过程.从浸泡开始到完好涂层鼓泡失效,缺陷涂层丝束电极阻抗响应一直是缺陷区电极腐蚀反应过程特征,而完好涂层的劣化过程和涂层下的腐蚀反应过程特征被"平均掉".根据电极表面的电流分布,结合阻抗谱技术实现了对表面任意局部阴极和阳极区阻抗测试.研究发现,浸泡开始时,缺陷涂层阴极电流和阳极电流均出现在缺陷区,随着腐蚀过程的发展,阳极电流仍然保持在缺陷区,但阴极电流逐渐向完好涂层下扩展.根据实验结果,对缺陷处和涂层下金属腐蚀反应发生发展的机理进行了深入讨论.  相似文献   

17.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A wide range of coatings can be produced by incorporating particles into an electrodeposit. The matrix may be a metal, conductive polymer or conductive ceramic, whereas the particle can be metallic, polymeric, ceramic or combinations of spheroidal, irregular or layered inclusions. Nanostructured, gradient, multilayer and sandwich layer deposit further widen possibilities. Electrochemical approaches to the deposition of composite coatings offer the benefits of good control over deposition rate (hence thickness), coating composition and deposit properties. Both faradaic electrodeposition and electrophoresis are usually involved. This review focuses on nanosized inclusions in a metal matrix over the last two decades. Interactions between bath composition, particle dispersion, operational variables and resultant deposit properties are poorly documented in the literature. Our understanding of the mechanism of composite deposition remains patchy, despite progress and computer models are scarce. Electrode geometry, electrolyte hydrodynamics and current distribution remain poorly treated. Markets in electronics, surface engineering, aerospace, corrosion protection and electrochemical energy conversion have been stimulated by newer uses for self-cleaning, superhydrophobic and biocompatible surfaces. Challenges to be met by further research and development are prioritised.  相似文献   

19.
Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to form a perfect layered structure,polymeric coating with graphene nanosheets usually needs micron-scale thickness to ensure the enhancement of corrosion protection.In this work,layer-by-layer stacked graphene nanocoatings were fabricated on stainless steel by self-assembly based on Marangoni effect.The anti-corrosion property of graphene coatings were studied through Tafel polarization curves,electrochemical impedance spectroscopy and accelerated corrosion test with extra applied voltage.The self corrosion current density of optimized three-layered graphene coated sample was one quarter of that of bare stainless steel.And the self corrosion potential of optimized sample is increased to-0.045 V.According to the results,graphene nanocoatings composed of layered nanosheets exhibits good anticorrosion property.Besides,the self-assembly method provide a promising approach to make layeredstructure coating for other researches about 2 D material nanosheets.  相似文献   

20.
Based on experiments and analysis of literature data, it is shown that a poor utilization of the active mass of the coating on metal oxide anodes of the DSA type during the electrochemical sodium chlorate production is due to pseudopassivation (an increase in the anodic potential due to a predominant corrosion dissolution of RuO2as compared with TiO2in the outer working zone of the coating), which develops with time. The true irreversible anode passivation, resulting from the formation of a stable barrier layer of higher titanium oxides at the coating/substrate interface, occurs when the DSA active mass wears out to a residual ruthenium content below 1.4 g/m2in it. The coating service life can be extended with no increase in the potential and with a minimum active mass consumption by using, concurrently with RuO2and TiO2, catalytically active additives with higher corrosion resistance than that of RuO2at pH 6 to 7. This prevents the anode pseudopassivation and, with an increased initial amount of the active mass, makes it possible to use the anodes until its residual content exceeds the limit below which the true passivation starts, and regenerate the coating by applying fresh mass on the residue of the existing mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号