首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Using a symmetry-based force-constant model of the lattice dynamics, the Raman-active phonon frequencies are calculated for almost 200 single-wall nanotubes of C, BN and BC(3). The n+m=constant family behaviour is found in most branches and these three kinds of nanotubes display different diameter and chirality dependence in different branches. In these branches, vibration modes that C, BN and BC(3) nanotubes have in common are presented in detail. For a particular family, the phonon frequency at Gamma point changes regularly with the chiral angle. Therefore, we may distinguish among single-wall nanotubes with similar diameter and different chiral angle.  相似文献   

2.
Length-dependent optical effects in single-wall carbon nanotubes   总被引:1,自引:0,他引:1  
Among the novel chemical and physical attributes of single-wall carbon nanotubes (SWCNTs), the optical properties are perhaps the most compelling. Although much is known about how such characteristics depend on nanotube chirality and diameter, relatively little is known about how the optical response depends on length, the next most obvious and fundamental nanotube trait. We show here that the intrinsic optical response of single-wall carbon nanotubes exhibits a strong dependence on nanotube length, and we offer a simple explanation that relates this behavior to the localization of a bound exciton along the length of a nanotube. The results presented here suggest that, for a given volume fraction, the longest nanotubes display significantly enhanced absorption, near-infrared fluorescence, and Raman scattering, which has important practical implications for potential applications that seek to exploit the unique optical characteristics of SWCNTs.  相似文献   

3.
As a promising one-dimensional material for building nanodevices, single-wall carbon nanotubes (SWNTs) should be organized into a rational architecture on the substrate surface. In this study, horizontally aligned SWNTs with two alignment modes were synthesized on the same R-plane sapphire wafer by chemical vapor deposition with cationized ferritins as catalysts. In the middle part of the wafer, SWNTs were aligned on the R-plane sapphire in the direction [1101]. At the edge of the wafer, SWNTs were aligned in the tangential direction to the wafer edge. The comparison of these two groups of SWNTs suggests the competition between the two alignment modes and indicates that atomic steps in high density have superior influence on the SWNTs' alignment to the crystal structure on the surface of the sapphire substrate. A "raised-head" growth mechanism model is proposed to explain why catalysts can stay active during the horizontally aligned growth of relatively long SWNTs with the strong interaction between SWNTs and the sapphire substrate.  相似文献   

4.
The intermediate frequency modes (IFM) of single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) were analyzed by Raman spectroscopy and in situ Raman spectroelectrochemistry. The inner and outer tubes of DWCNTs manifested themselves as distinct bands in the IFM region. This confirmed the diameter dependence of IFM frequencies. Furthermore, the analysis of inner tubes of DWCNTs allowed a more-precise assignment of the bands in the IFM region to features intrinsic for carbon nanotubes. Although the inner tubes in DWCNTs are assumed to be structurally perfect, the role of defects on IFM was discussed. The dependence of IFM on electrochemical charging was also studied. In situ spectroelectrochemical data provide a means to distinguish the bands of the outer and inner tubes.  相似文献   

5.
Facile routes for the synthesis of hybrid materials consisting of regioregular poly(3-octylthiophene)s covalently attached to single-wall carbon nanotubes are presented for the first time. These materials are easily processable using common organic solvents, and at the same time combine the properties of regioregular poly(3-alkylthiophene)s with those of single-wall carbon nanotubes. Moreover, studies of the properties of these materials have provided strong evidence for an electron transfer from the regioregular poly(3-octylthiophene) to the single-wall carbon nanotube.  相似文献   

6.
For preparation of water-resistant and thermally stable nonlinear optical elements containing single-wall carbon nanotubes, an original method for the formation of layered structures based on alternating layers of poly(vinyl chloride) and a water-soluble polymer (carboxymethyl cellulose) with dispersed singlewall carbon nanotubes is proposed. An analysis of the optical properties of the resulting composites by means of optical-absorption spectroscopy and Raman scattering makes it possible to confirm that the nanocomposites contain individual (not united in bundles) single-wall carbon nanotubes.  相似文献   

7.
Single-walled carbon nanotube samples produced in the presence of different combinations of metal catalysts have been studied by resonant Raman spectroscopy. The diameter distribution of different samples has been determined by analysis of the laser excitation energy dependence of the tangential modes associated with metallic nanotubes. These modes are resonantly enhanced over a narrow range of the exciting energies, which shifts for different samples. The Raman cross-section expression has been used to fit the experimental Raman excitation profiles. This procedure was used to determine the mean value and the width of the distribution of diameters within each sample.  相似文献   

8.
We have investigated the behavior of single-walled carbon nanotubes and nanospheres (C(60)) under high hydrostatic pressure using Raman spectroscopy over the pressure range 0.2-10 GPa using a diamond anvil cell. Different liquid mixtures were used as pressure transmission fluids (PTF). Comparing the pressure dependence of the Raman peak positions for the nanotubes and the nanospheres in different PTF leads to the observation of a number of new phenomena. The observed shift in Raman peak position of both radial and tangential modes as a function of applied pressure and their dependence on the PTF chemical composition can be rationalized in terms of adsorption of molecular species from the of PTF on to the surface of the carbon nanotubes and/or nanospheres. The peak shifts are fully reversible and take place at a comparatively modest pressure (2-3 GPa) that is far below pressures that might be required to collapse the nanoparticles. Surface adsorption of molecular species on the nanotube or nanospheres provides a far more plausible rational for the observed phenomena than ideas based on the notion of tube collapse that have been put forward in the recent literature.  相似文献   

9.
By using the spectral moments method, we calculate the infrared spectra of chiral and achiral single-walled carbon nanotubes (SWCNTs) of different diameters and lengths. We show that the number of the infrared modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. Furthermore, the dependence of the infrared spectrum as a function of the size of the SWCNT bundle is analyzed. These predictions are useful to interpret the experimental infrared spectra of SWCNTs.  相似文献   

10.
Vibrational structures of C60-related finite-length nanotubes, C(40+20n) and C(42+18n) (1 < or = n < or = 4), in which n is, respectively, the number of cyclic cis- and trans-polyene chains inserted between fullerene hemispheres, are analyzed from density functional theory (DFT) calculations. To illuminate the end-cap effects on their vibrational structures, the corresponding tubes terminated by H atoms C(20n)H20 and C(18n)H18 (1 < or = n < or = 5) are also investigated. DFT calculations show a broad range of vibrational frequencies for the finite-size nanotubes: high-frequency modes (1100-1600 cm(-1)) containing oscillations along tangential directions (tangential modes), medium-frequency modes (700-850 cm(-1)) whose oscillations are located on the edges or end caps, and low-frequency modes (300-600 cm(-1)) involving oscillations along the radial directions (radial modes). Broadening of the calculated frequencies is due to the number of nodes in the standing waves of normal modes in the finite-size tubes. In the capped tubes, calculated vibrational frequencies are insensitive to the number of chains (n), whereas in the uncapped tubes, most vibrational frequencies change significantly with an increase in tube length. The discrepancy in the size dependency is reasonably understood by their C-C bonding networks; the capped tubes have similar bond-length alternation patterns within the polyene chains irrespective of n, whereas the uncapped tubes have various bond-deformation patterns. Thus, DFT calculations illuminate that the edge effects have strong impacts on the vibrational frequencies in the finite-size nanotubes.  相似文献   

11.
We present an unusual temperature dependence of thermal strains in 4-(10-hydroxy)decyl benzoate (HDB) modified SWNTPS (SWNT-single wall carbon nanotube, PS-polystyrene) nanocomposites. The strain transfer from the matrix to nanotubes in these nanocomposites, inferred from the frequency change of the Raman active tangential modes of the nanotubes, is enhanced strongly below 300 K, whereas it is vanishingly small at higher temperatures. The increased strain transfer is suggestive of reinforcement of the HDB-SWNTPS nanocomposites at low temperatures. On the other hand, the pristine SWNTs couple weakly to the PS matrix over the entire temperature range of 4.5-410 K. We argue that the strain transfer in HDB-SWNTPS is determined by the thermomechanical properties of the interface region composed of polystyrene plasticized by the tethered alkanelike modifier.  相似文献   

12.
The reaction of C2 with growing single-wall carbon nanotubes of different chiralities is investigated using density functional theory. It is found that the energy of the frontier orbitals for (5,5) and (6,6) armchair carbon nanotubes exhibits periodic behavior with an increasing number of carbon atoms in the nanotube. Such periodic behavior induces oscillations in the reaction energy released by adsorption of C2 to the nanotube open edge. In contrast, the energy of the frontier orbitals of the (6,5) chiral tube remains constant as the number of C atoms increases, and the same stability is observed in the adsorption energy. It is suggested that this may be one of the reasons for the low percent of armchair single-wall carbon nanotubes found in the experimental synthesis.  相似文献   

13.
The effect of impurities on the properties of single-wall carbon nanotubes (SWNTs) was investigated with multiple analytical techniques. Charge transfer is believed to occur between the impurities and the SWNTs as observed by combining the Raman scattering and x-ray photoelectron measurements. The impurity condition (type and level) was found to strongly affect the electronic and vibrational properties of the SWNT. The metal catalysts in the impurity usually behave as electron donors, which can downshift the graphitic (G) band as well as the radial breathing mode frequencies. The low temperature air oxidation of as-prepared SWNT material usually upshifts the radial breathing mode Raman peaks to higher frequencies.  相似文献   

14.
利用荧光光谱、UV吸收光谱、同步荧光光谱和透射电子显微镜等技术较为系统地研究了水溶性羟基化单壁碳纳米管与人血清白蛋白(HSA)的相互作用. 实验发现, 这种羟基化单壁碳纳米管可以明显猝灭HSA的内源荧光, 且猝灭效应随碳纳米管浓度增大而增强. 同时, HSA对水溶性羟基化单壁碳纳米管起到一定的分散和稳定作用. 同步荧光光谱表明, 二者之间的相互作用可导致HSA的构象发生变化, HSA的色氨酸残基荧光信号发生2 nm的红移, 表明色氨酸残基周围微环境的极性降低.  相似文献   

15.
Double-wall carbon nanotubes (DWCNTs), single-wall carbon nanotubes (SWCNTs), and multi-wall carbon nanotubes (MWCNTs) were investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells. The counter-electrodes were prepared on fluorine-doped tin oxide glass substrates by the screen printing technique from pastes of carbon nanotubes and organic binder. The solar cells were assembled from carbon nanotubes counter-electrodes and screen printed anodes made from titanium dioxide. The cells produced with DWCNTs, SWCNTs or MWCNTs have overall conversion efficiencies of 8.0%, 7.6% and 7.1%, respectively. Electrochemical impedance spectroscopy measurements revealed that DWCNTs displayed the highest catalytic activity for the reduction of tri-iodide ions. The large surface area and superior chemical stability of the DWCNTs facilitated the electron-transfer kinetics at the interface between counter-electrode and electrolyte and yielded the lowest transfer resistance, thereby improving the photovoltaic activity. A short-term stability test at moderate conditions confirmed the robustness of solar cells based on the use of DWCNTs, SWCNTs or MWCNTs.
Figure
Double-wall carbon nanotubes, single-wall carbon nanotubes and multi-wall carbon nanotubes have been investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells (DSCs). The carbon nanotubes (CNTs) based DSCs exhibit efficiency high up to 8.0% and are comparable to the Pt based DSCs prepared in the same condition. The CNTs based DSCs have demonstrated a good stability.  相似文献   

16.
A 3D single-wall carbon nanotube can be viewed as a 2D graphite sheet rolled into a 3D cylinder. In the study of dispersion relations of carbon nanotubes, the consistent force parameters for 2D graphite sheets have to be modified to include the curvature effect. The present paper reports a series of calculations of phonon dispersion relations for single-wall carbon armchair, zigzag nanotube in which the curvature effect has been properly treated. The symmetry of crystal vibration mode at the centre of Brillouin zone is analyzed based on our numeric results and the structure symmetry of the nanotubes.  相似文献   

17.
在滴涂法制得单壁碳纳米管(SWNTs)修饰电极的基础上,采用电化学方法沉积纳米羟基磷灰石(HA)涂层,进而利用分子组装技术将葡萄糖氧化酶(GOD)固定到该电极上,制得的修饰电极的循环伏安测量结果表明,GOD发生了直接的电子传递.GOD-HA-SWNTs/GC修饰电极对不同浓度的葡萄糖呈现两个良好的线性响应范围,有望开发...  相似文献   

18.
The chemical, electrophysical, magnetic, tribological, and physicomechanical properties of multiwall carbon nanotubes (MWCNTs), as well as the characteristics of new nanocomposites and instruments thereof were discussed. These MWCNTs are produced by unique technology and are free from impurities of other carbon modifications. Advantages of multiwall over single-wall carbon nanotubes were demonstrated for applications in electronic devices and preparation of nanocomposites (as filling agents).  相似文献   

19.
The main obstacle to widespread application of single-wall carbon nanotubes is the lack of reproducible synthesis methods of pure material. We describe a new growth method for single-wall carbon nanotubes that uses molecular beams of precursor gases that impinge on a heated substrate coated with a catalyst thin film. In this growth environment the gas and the substrate temperature are decoupled and carbon nanotube growth occurs by surface reactions without contribution from homogeneous gas-phase reactions. This controlled reaction environment revealed that SWCNT growth is a complex multicomponent reaction in which not just C, but also H, and O play a critical role. These experiments identified acetylene as a prolific direct building block for carbon network formation that is an order of magnitude more efficient than other small-molecule precursors. The molecular jet experiments show that with optimal catalyst particle size the incidence rate of acetylene molecules plays a critical role in the formation of single-wall carbon nanotubes and dense vertically aligned arrays in which they are the dominant component. The threshold for vertically aligned growth, the growth rate, the diameter, and the number of walls of the carbon nanotubes are systematically correlated with the acetylene incidence rate and the substrate temperature.  相似文献   

20.
The specific features of charge carrier transport in poly(N-vinylcarbazole) films doped with single-wall carbon nanotubes have been investigated. The mobilities of electrons and holes in ITO-polymer composite-Al samples have been determined by the time-of-flight method and by measuring the voltage-current characteristics of steady-state currents. According to the time-of-flight experiments, in the films of a poly(N-vinylcarbazole)-0.26 wt % single-wall carbon nanotubes composite, the drift mobility of electrons lies within (1.2–4.5) × 10?6 cm2/(V s) and exceeds the mobility of holes by a factor of 5. The shape of the transient current suggests the dispersion character of transport of electrons and holes. With an increase in the concentration of single-wall nanotubes from 0.26 to 0.43 wt %, the conductivity of the composite films increases by two orders of magnitude; that is, the threshold of conductivity percolation has been achieved. A simple model is proposed to describe the transport of charge carriers in the polymer system under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号