首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The profiles of X-ray diffraction patterns have been examined for several powder samples of δ-TiCl3, obtained by mechanical activation of γ-TiCl3 and presenting different catalytic activities in the Ziegler-Natta stereospecific polymerization of propylene to isotactic polypropylene. Particular attention has been paid to the δ-TiCl3 samples showing the best catalytic properties.On the basis of a previous investigation by Allegra, a mathematical treatment has been developed and a disorder function has been elaborated taking into account, in calculating the profiles of the X-ray diffraction intensities, not only the disorder effects but also the sizes of the δ-TiCl3 crystallites. The selected experimental pattern (δ-TiCl3, highly activated) has been well reproduced in this way and fitted by overlapping the calculated spectra of two disordered forms, labelled ?1 and ?2, which differ in the relative amounts cubic and hexagonal sequences of the Cl-Ti-Cl layers constituting the violet forms of TiCl3. The best fit was achieved by introducing into the calculations crystallite sizes of about 70 Å.The results of the structural investigation are also discussed in terms of activity of the δ-TiCl3 based catalyst for the stereospecific polymerization of propylene.  相似文献   

2.
The reaction of RHN(CH2)3NHR (1a,b) (a, R=2,6-iPr2C6H3; b, R=2,6-Me2C6H3) with 2 equiv of BuLi followed by 2 equiv of ClSiMe3 yields the silylated diamines R(Me3Si)N(CH2)3N(SiMe3)R (3a,b). The reaction of 3a,b with TiCl4 yields the dichloride complexes [RN(CH2)3NR]TiCl2 (4a,b) and two equiv of ClSiMe3. An X-ray study of 4a (P21/n, a=9.771(1) Å, b=14.189(1) Å, c=21.081(2) Å, β=96.27(1)°, V=2905.2(5) Å3, Z=4, T=25°C, R=0.0701, Rw=0.1495) revealed a distorted tetrahedral geometry about titanium with the aryl groups lying perpendicular to the TiN2-plane. Compounds 4a,b react with 2 equiv of MeMgBr to give the dimethyl derivatives [RN(CH2)3NR]TiMe2 (5a,b). An X-ray study of 5b (P212121, a=8.0955(10) Å, b=15.288(4) Å, c=16.909(3) Å, V=2092.8(7) Å3, Z=4, T=23°C, R=0.0759, Rw=0.1458) again revealed a distorted tetrahedral geometry about titanium with titanium–methyl bond lengths of 2.100(9) Å and 2.077(9) Å. These titanium dimethyl complexes are active catalysts for the polymerization of 1-hexene, when activated with methylaluminoxane (MAO). Activities up to 350,000 g of poly(1-hexene)/mmol catalyst·h were obtained in neat 1-hexene. These systems actively engage in chain transfer to aluminum. Equimolar amounts of 5a or 5b and B(C6F5)3 catalyze the living aspecific polymerization 1-hexene. Polydispersities (Mw/Mn) as low as 1.05 were measured. Highly active living systems are obtained when 5a is activated with {Ph3C}+[B(C6F5)4]. A primary insertion mode (1,2 insertion) has been assigned based on both the initiation of the polymer chain and its purposeful termination with iodine.  相似文献   

3.
The solid state structure of trimethylsilylmethyllithium has been determined by single crystal X-ray diffraction techniques. The compound crystallizes in the monoclinic system, space group P21/n. Cell dimensions were determined as follows: a 10.931(3), b 18.397(6), c 21.490(8) Å, β 96.0(2)°, V 4298(2) Å3, Z = 4, and a final Rf 5.1% based on 2203 data with σ(I) ≥ 2.5σ(I). The compound is formed by hexameric units, {LiCH2Si(CH3)3}6, with two distinct classes of LiLi distances of 2.46 and 3.18 Å. There are also two LiC distances av 2.20 and 2.27 Å. The LiH distances to the methylene H atoms have been determined and are short varying between 2.0 and 2.3 Å to the closest lithium atom. The structure, including possible LiH interactions, is discussed and compared with the other known hexameric aggregates.  相似文献   

4.
The vibrational Infrared and Raman Spectra of a MgCl2-TiCl4 Ziegler-Natta catalyst precursor with a 50/1 MgCl2/TiCl4 ratio have been recorded. The Raman spectrum of this catalyst precursor, in the range 50-500 cm−1, shows clear scattering lines which can be assigned to the complex MgCl2-TiCl4, well separated from those of the initial species. Analogous, but less clear signals can be found in the infrared spectrum. Vibrational symmetry analysis and quantum chemical calculations of suitable models of MgCl2-TiCl4 complex have been made for the interpretation of the experimentally recorded spectra. The observed spectroscopic signals can be explained in terms of the existence of only one type of MgCl2-TiCl4 complex where the TiCl4 molecules are complexed on the MgCl2 along the (110) lateral cuts in a local C2v symmetry with the Ti atoms in an octahedral coordination.  相似文献   

5.
Reactions in the CsCl? TiCl3? Ti system afford CsTiCl3 (CsNiCl3 type, a = 7.3086(7) Å, c = 6.0670(8) Å) and the new phase CsTi2Cl7, the structure of which was determined by single crystal X-ray diffraction means (P2/c, Z = 2, a = 7.0076(4) Å, b = 6.2256(4) Å, c = 12.000(2) Å, β = 92.175(6)°, R/Rw = 0.026/0.035 for 1403 reflections, 2Θ ≤ 60°, MoKα). The structure can be generated by condensation of TiCl6 groups first through cis edges to form TiCl2Cl4/2 ribbons and then by interconnection of these with one chlorine per titanium to give layers, viz., [Ti(Cl)Cl4/2Cl1/2]?. The remaining, singly bonded chlorine projects into the interlayer region and has a Ti? Cl distance 0.208 Å less than the average for the five, 2.466 Å, reflecting significant pi bonding of the chlorine to titanium. Possible interaction of the d orbitals on adjacent titanium(III) atoms is also considered.  相似文献   

6.
Two new isostructural methoxide-bridged dimeric oxovanadium(V) complexes [VO(L1)(OMe)]2 (1) and [VO(L2)(OMe)]2 (2), where L1 and L2 are the deprotonated forms of 3-bromo-N′-[1-(2-hydroxyphenyl)×ethylidene]benzohydrazide (H2L1) and 3-chloro-N′-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide (H2L2) respectively, are synthesized and characterized by elemental analyses, IR spectra, and single crystal X-ray determination. Both crystals crystallize in the triclinic space group P-1. For 1, a = 7.5237(15) Å, b = 10.846(3) Å, c = 11.195(3) Å, α = 84.143(3)°, β = 72.244(3)°, γ = 77.869(3)°, V = 849.9(4) Å3, Z = 1, R 1 = 0.0634, wR 2 = 0.1373. For 2, a = 7.493(2) Å, b = 10.740(3) Å, c = 11.109(3) Å, α = 84.569(2)°, β = 71.783(2)°, γ = 79.822(2)°, V = 835.0(4) Å3, Z = 1, R 1 = 0.0511, wR 2 = 0.1076. Each V atom in the complexes is octahedrally coordinated.  相似文献   

7.
Two new zinc(II) complexes [ZnL(N3)]·BF4 (1) and [ZnBrL]·BF4 (2), derived from the tetradentate Schiff base ligand N,N′-bis(1-pyridin-2-yl-ethylidene)propane-1,3-diamine (L), are prepared and characterized by physicochemical methods and single crystal X-ray crystallography. The crystal of (1) is triclinic: space group P-1, a = 8.593(1) Å, b = 8.752(1) Å, c = 13.393(2) Å, α = 97.153(1)°, β = 93.046(1)°, γ = 91.577(1)°, V = 997.4(2) Å3, Z = 2. The crystal of (2) is triclinic: space group P-1, a = 8.351(1) Å, b = 8.956(1) Å, c = 13.139(2) Å, α = 92.716(1)°, β = 94.241(2)°, γ = 95.016(1)°, V = 974.8(2) Å3, Z = 2. The geometries of the penta-coordinated zinc atoms in both complexes are intermediate between the square pyramid and the trigonal bipyramid having the Addison parameters of 0.39 and 0.47 respectively. The syntheses of the complexes show distinct preference for the anions in the order Br? > N 3 ? > CH3COO?.  相似文献   

8.
《Polyhedron》1987,6(7):1577-1585
Reaction of [ReOCl3(PPh3)2] with bromophenylhydrazine in methanol yields [ReCl(N2C6H4Br)2(PPh3)2] (1). Complex 1 reacts with arylthiolates to give mixtures of [Re(SAr)(N2C6H4Br)2(PPh3)2] (2) and [Re2(SAr)7(NNR)2]. Complexes 1 and 2 display trigonal bipyramidal geometries with the phosphine ligands occupying the axial sites. A significant feature of the structures is the nonequivalence of the rhenium-diazenido moieties, such that for 1 the ReN(1) and N(1)N(2) distances are 1.80(2) and 1.24(3) Å, while ReN(3) and N(3)N(4) are 1.73(2) and 1.32(3) Å, and for 2 the ReN distances are 1.73(1) and 1.80(2)° with corresponding NN distances of 1.32(2) and 1.25(2) Å. Reaction of (PPh4)[ReO(SPh)4] (3) with unsymmetrically disubstituted hydrazines affords complexes of the type [ReO(SPh)3(NMRR′)] (R = Me, R′ = Ph for 4). Complexes 3 and 4 display distorted square pyramidal geometries with the oxo groups apical. The significant feature of the structure of 4 is the nonlinear ReN(1)N(2) linkage, exhibiting an angle of 145.6(10)°. The angle does not appear to correlate with a significant contribution from a valence form with sp2 hybridization at the α-nitrogen. Crystal data: 1: monoclinic space group, P21/n, a = 12.216(2) Å, b = 19.098(2) Å, c = 20.257(4) Å, β = 106.20(1)°, V = 4538.3(8) Å3 to give Z = 4; structure solution and refinement based on 1905 reflections converged at R = 0.070. 2: monoclinic space group P21/n, a = 14.393(2) Å, b = 18.842(3) Å, c = 20.717(4)Å, β = 110.26(1)°, V = 5270.5(8) Å3 to give Z = 4 for D = 1.53 g cm−1; structure solution and refinement based on 4249 reflections to give R = 0.070. 3: monoclinic space group P21/n, a = 12.531(2) Å, b = 24.577(4) Å, c = 16.922(3) Å, β = 99.06(1)°, V = 5146.2(9) Å3, D = 1.36 g cm−3 for Z = 4, 2912 reflections, R = 0.050. 4: monoclinic space group p21/n, a = 16.137(2) Å, b = 9.863(2) Å, c = 16.668(2) Å, β = 111.12(1)°, V = 2474.7(6) Å3, D = 1.74 g cm−3 for Z = 4, 2940 reflections, R = 0.066.  相似文献   

9.
A new azido-coordinated nickel(II) complex [NiL1(N3)] (1) and a new thiocyanato-coordinated nickel(II) complex [NiL2(NCS)] (2), where L1 and L2 are the monoanionic forms of Schiff bases 2-[(2-isopropylaminoethylimino)methyl]-6-methylphenol and 2-[(2-dimethlaminoethylimino)methyl]-6-methylphenol respectively, are prepared and structurally characterized by elemental analysis, IR spectra, and single crystal X-ray crystallography. Complex 1 crystallizes in the triclinic space group P-1 with unit cell dimensions a = 8.812(2) Å, b = 9.433(3) Å, c = 9.488(2) Å, α = 81.933(2)°, β = 69.925(2)°, γ = 84.591(2)°, V = 732.5(3) Å3, Z = 2, R 1 = 0.0291, and wR 2 = 0.0734. Complex 2 crystallizes in the monoclinic space group P21/n with unit cell dimensions a = 7.4497(4) Å, b = 6.1933(3) Å, c = 31.5126(18) Å, β = 92.484(2)°, V = 1452.57(13) Å3, Z = 4, R 1 = 0.0307, and wR 2 = 0.0668. The Ni atom in each of the complexes is coordinated by three donor atoms of the Schiff base ligand and by one N atom of the azide or thiocyanate ligand, forming a square planar geometry. The azide and thiocyanate anions readily coordinate to the complexes as secondary ligands.  相似文献   

10.
The coordination compounds [CoL2Cl2] (I) and [CdL2(H2O)2(NO3)2] (II) have been synthesized by the reaction of CoCl2 · 6H2O and Cd(NO3)2 · 4H2O with L = 2-amino-4-methylpyrimidine (Ampym, C5H7N3), and their structures have been solved. The crystals of complex I are triclinic, space group $P\bar 1$ , a = 5.627(1) Å, b = 11.191(1) Å, c = 12.445(1) Å, α = 81.00(1)°, β = 77.21(1)°, γ = 76.18(1)°, V = 737.7(2) Å3, ρcalcd = 1.567 g/cm3, Z = 2. The crystals of complex II are monoclinic, space group P21/c, a = 10.390(1) Å, b = 11.982(1) Å, c = 7.624(1) Å, β = 102.61(1)°, V = 926.1(2) Å3, ρcalcd = 1.760 g/cm3, Z = 2. Discrete [CoL2Cl2] moieties are realized in the structure of complex I. The cobalt atom is tetrahedrally coordinated to the two nitrogen atoms of crystallographically nonequivalent ligands L and two chlorine atoms (Co(1)-Navg, 2.051(4)Å; Co(1)-Cl(1), 2.241(1) Å; Co(1)-Cl(2), 2.263 Å; bond angles at the cobalt atom lie within a range of 102.1°–118.6°). The complexes are linked into supramolecular zigzag chains by N-H...N(Cl) hydrogen bonds. In the structure of complex II, the Cd2+ ion (at the inversion center) is coordinated in pairs to the nitrogen atoms of ligand L and the O(NO3) and O(H2O) oxygen atoms. The coordination of the Cd2+ ion is distorted octahedral (Cd(1)-N(1), 2.341Å; Cd(1)-O(1), 2.340(4) Å; Cd(1)-O(4), 2.327(3) Å; bond angles at the cadmium atom lie within a range of 79.1°–100.9°). N-H...N hydrogen bonds link the complexes into supramolecular chains. These chains are linked into a supramolecular framework by the O-H...O hydrogen bonds between water molecules and NO3 groups.  相似文献   

11.
《Polyhedron》1987,6(6):1433-1437
Two compounds of the general formula [L3V(μ-Cl)3L3]BPh4 [L = tetrahydrofuran (1) or 3-methyltetrahydrofuran (2)] were prepared and investigated via single-crystal X-ray studies. Compound 1, tris(μ-chloro)hexakis(tetrahydrofuran)divanadium(II) tetraphenylborate, crystallizes in space group P21/c with unit-cell dimensions: a = 16.636(6) Å, b = 16.771(5) Å, c = 19.158(5) Å, β = 110.71(4)°, V = 5000(6) Å3, Z = 4. Compound 2, tris(μ-chloro)hexakis(3-methyltetrahydrofuran)divanadium(II) tetraphenylborate, forms monoclinic crystals (space group Cc) with a = 18.376(5) Å, b = 10.843(3) Å, c = 29.317(6) Å, β = 103.02(2)°, V = 5691(5) Å3, Z = 4. Refinement, by least-squares methods using a data to parameter ratio of 6.1 for 1 and 9.1 for 2, converged with an unweighted discrepancy index of 7.46 and 5.31 % for 1 and 2, respectively. The V—V′ distances are: 2.978(3) Å for 1 and 2.976(1) Å for 2. The use of 3-methyltetrahydrofuran as a supporting ligand is discussed since such substituted THF molecules reduce the tendency to disorder in the [V2(μ-Cl)3(THF)6]+ cations.  相似文献   

12.
The crystal structures of SrLnCuS3 (Ln = La, Pr) have been refined using X-ray powder diffraction data and the derivative difference minimization method in the anisotropic approximation for all atoms. The crystals are orthorhombic, space group Pnma, BaLaCuS3 structural type, unit cell parameters a = 11.2415(1) Å, b = 4.11053(6) Å, c = 11.5990(1) Å, V = 535.97(1) Å3 (SrLaCuS3) and a = 11.1171(1) Å, b = 4.09492(6) Å, c = 11.5069(2) Å, V = 523.84(1) Å3 (SrPrCuS3). The crystallographic positions of strontium and lanthanides are mixed by 21 and 11%, respectively. The SrLa-S and SrPr-S bond lengths range from 2.969(3) to 3.131(3) Å and from 2.924(2) to 3.056(2) Å, respectively. Distorted CuS4 tetrahedra form chains running along the b axis. One-capped Sr/LnS7 trigonal prisms form a three-dimensional structure with channels accommodating copper ions. The temperatures and enthalpies of incongruent melting are, respectively, 1513 K and 18 J/g (SrLaCuS3) and 1426 K and 34 J/g (SrPrCuS3). The compounds are IR transparent in the region of 3000–1800 cm?1.  相似文献   

13.
The results of syntheses and X-ray diffraction analyses of mononuclear complexes [ML2(H2O)4] (M = Co2+(I), Cu2+(II), and Zn2+(III)) containing water molecules and anions of acetic acid α-(N-benzoxazolin-2-one) (L = C9H6O4) are presented. The crystals of complexes I–III are isostructural (space group P21/n, Z = 2) and are built of discrete neutral complex molecules. The crystallographic data are as follows: for complex I, a = 6.1470(5), b = 5.3310(3), c = 30.5894(17) Å, β = 95.056(6)°, V = 998.50(11) Å3; for complex II, a = 5.9661(6) Å, b = 5.1414(4) Å, c = 32.672(2) Å, β = 92.395(6)°, V = 1001.33(14) Å3; and for complex III, a = 6.1404(3) Å, b = 5.3476(2) Å, c = 30.5865(12) Å, β = 94.708(4)°, V = 1000.96(7) Å3. The metal atoms (M) of the complexing agents are localized in the crystallographic symmetry centers and have a distorted octahedral environment due to two oxygen atoms of the carboxy groups of two monodentate ligands (L) and four water molecules. The M-O(1w)(H2O) and M-O(2w)(H2O) bond lengths for the indicated complexes are 2.088(3) and 2.118(3), 2.446(3) and 1.971(3), and 2.113(4) and 2.093(3) Å for M = Co2+, Cu2+, and Zn2+, respectively. The crystal structures are formed due to packing of chains built of inter-molecular hydrogen bonds O-H…O.  相似文献   

14.
New compounds of sparfloxacin (C19H22F2N4O3, SfH) and levofloxacin (C18H20FN3O4, LevoH) with mineral acids, namely, sparfloxacinium bromide (SfH · HBr, I) and levofloxacindium diperchlorate (LevoH · 2HClO4, II), have been synthesized and characterized by X-ray diffraction. Crystallographic data are a = 7.7151(7) Å, b = 26.109(3) Å, с = 10.008(1) Å, β = 103.556(1)°, V = 1959.7(3) Å3, space group P21/n, Z = 4 for I and a = 9.727(6) Å, b = 20.440(12) Å, с = 12.286(7) Å, β = 104.327(8)°, V = 2367(2)Å3, space group P21, Z = 4 for II. The structures of these compounds are stabilized by intra- and intermolecular hydrogen bonds and π–π interaction between SfH2+ or LevoH32+ ions.  相似文献   

15.
《Solid State Sciences》2001,3(1-2):223-234
The first bromothioantimonates of cerium and lanthanum, Ce2SbS5Br (I), CeLaSbS5Br (II) and La2SbS5Br (III), have been synthesized and characterized. I and III crystallize in the Pnma (n°62) space group while the structure of II was refined in the P212121 (n°19) space group probably due to an ordering between Ce and La. The cell parameters are: a=8.847(2) Å, b=5.492(1) Å, c=17.697(6) Å, V=859.9(6) Å3 for I; a=8.9023(9) Å, b=5.5113(6) Å, c=17.809(2) Å, V=873.8(3) Å3 for II and a=8.905(2) Å, b=5.526(1) Å, c=17.883(3) Å, V=880.0(5) Å3 for III. These three materials exhibit the same novel structural arrangement with lanthanides surrounded by sulfur and bromine anions in two different LnS7Br3 and LnS8Br units. Some sulfur atoms are engaged in SS bonding dimers while antimony exhibits a SbS4E coordination (E=lone pair), the characteristics of which hint at a stereo-active 5s2 electron pair. The charge balance in the materials is written as LnIII2SbIII(S2)–IIS–II3Br. The same red color of the three materials rules out the occurrence of the Ce-4f1→Ce-5d1 electronic transition usually observed in Ce containing sulfides. In contrast, band structure calculations (TB-LMTO-ASA) assigned the observed absorption threshold around 2.08 eV for the three phases to the existence of a VB→CB electronic transition, i.e. an unpaired S or Br→Sb or paired S charge transfer.  相似文献   

16.
The silver(I) nitrate complexes with 2,3-, 2,4-, 2,6-, and 3,5-lutidine (Lut, dimethylpyridine C7H9N), [AgNO3(Lut)2], are synthesized and studied by multinuclear NMR (1H, 13C, and 15N) in various solvents (chloroform, dimethyl sulfoxide, and acetonitrile). The influence of steric and electronic factors of the organic ligand on the parameters of the NMR spectra is revealed. It is shown that the 15N NMR spectra are the most informative. The structure of complex [AgNO3(3,5-Lut)2] is determined. The crystals are monoclinic, space group C2/c, a = 14.599(1) Å, b = 8.422(1) Å, c = 12.954(1) Å, β = 99.60(1)°, V = 1570(2) Å3, ρcalcd = 1.625 g/cm3, Z = 4. The structure is built of discrete neutral complexes [AgNO3(3,5-Lut)2]. The coordination mode of the Ag+ ion includes two nitrogen atoms of two crystallographically equivalent lutidine ligands (Ag-N 2.194(5) Å, angle NAgN 147.6(3)°). The nitrate ion behaves as a weak chelating ligand with respect to the Ag+ ion (Ag…O 2.674(6) Å).  相似文献   

17.
The synthesis and X-ray single crystal study of two mixed-ligand Cu(II) complexes are performed: (CH3C(NCH3)CHC(O)CH3)(CF3C(O)CHC(O)CF3)Cu (1) (space group P21/c, a = 7.0848(12) Å, b = 17.854(3) Å, c = 11.837(2) Å, β = 100.495(6)°, V = 1472.4(4) Å3, Z = 4), (CH3C(NC6H5)CHC(O)CH3)· (CF3C(O)CHC(O)CF3)Cu (2) (space group P-1, a = 9.1119(4) Å, b = 9.6954(4) Å, c = 11.1447(6) Å, α = 113.784(2)°, β = 92.383(2)°, γ = 95.402(2)°, V = 893.52(7) Å3, Z = 2). The structures are molecular, formed from neutral mixed-ligand copper complexes. The central copper atom has the (3O+N) coordination environment with average Cu-O distances of 1.948 Å and Cu-N of 1.932 Å; the chelate O-Cu-N angle (average) is 94.0°. In the structures, the complexes are linked into dimeric associates with Cu…Cu distances of 3.197 Å (for 1) and 3.246 Å (for 2). The volatility of mixed-ligand complexes 1 and 2 is in between of that of the starting homo-ligand complexes.  相似文献   

18.
Two new chlorido-bridged dinuclear copper(II) complexes [Cu2Cl2(L1)2] (1) and [Cu2Cl2(L2)2] (2), where L1 and L2 are the deprotonated form of Schiff bases 2-[1-(2-morpholin-4-ylethylimino)ethyl]phenol (HL1) and 2-[1-(2-piperidin-1-ylethylimino)ethyl]phenol respectively, are prepared and structurally characterized by elemental analysis, IR spectra, and single crystal X-ray crystallography. Complex 1 crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 8.0816(2) Å, b = 19.1780(3) Å, c = 9.6757(3) Å, β = 106.465(2)°, V = 1438.13(6) Å3, Z = 2, R 1 = 0.0409, and wR 2 = 0.1085. Complex 2 crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 7.7640(10) Å, b = 19.930(3) Å, c = 9.628(2) Å, β = 103.890(3)°, V = 1446.2(4) Å3, Z = 2, R 1 = 0.0634, and wR 2 = 0.1316. Each Cu atom in the complexes is coordinated by three donor atoms of the Schiff bases and by two bridging Cl atoms, forming square pyramidal geometry. The Cl anions are preferred bridging groups for the construction of dinuclear copper complexes with tridentate Schiff bases.  相似文献   

19.
Two hydrazone compounds N′-(2,4-dichlorobenzylidene)-4-methylbenzohydrazide monohydrate (1) and 2-chloro-5-nitro-N′-(4-methylbenzylidene)benzohydrazide (2) derived from 4-methylbenzohydrazide with different benzaldehydes are synthesized and characterized by physicochemical methods and single crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 4.714(2) Å, b = 13.093(3) Å, c = 24.754(3) Å, V = 1527.9(8) Å3, Z = 4, R 1 = 0.0812, and wR 2 = 0.1623. Compound 2 crystallizes in the monoclinic space group Cc with unit cell parameters a = 11.564(2) Å, b = 13.271(2) Å, c = 9.462(2) Å, β = 96.860(2)°, V = 1441.7(4) Å3, Z = 4, R 1 = 0.0461, and wR 2 = 0.0896. The crystals of the compounds are stabilized by intermolecular hydrogen bonds as well as π…π stacking interactions.  相似文献   

20.
A novel compound, KBi(C6H4O7) · 3.5H2O (I), has been synthesized in the Bi(NO3)2-K3(HCit) system (HCit3? is an anion of citric acid C6H8O7) at a component ratio (n) of 8 in a water-glycerol mixture, and its crystal structure has been determined. The crystals are unstable in air. The crystals are triclinic: a = 7.462 Å, b = 10.064 Å, c = 17.582 Å, α = 100.27°, β = 99.31°, γ = 105.48°, V = 1221.2 Å3, Z = 2, space group $P\bar 1$ . In the structure of I, asymmetric binuclear fragments [Bi2(Cit4?)2(H2O)2]2? are linked through inversion centers into polymeric chain anions. Ions K+ and crystal water molecules are arranged in channels between the chains. The Bi(1)...Bi(2) distances in the binuclear fragment are 4.62 Å, and the Bi(1)...Bi(1) and Bi(2)...Bi(2) distances between bismuth atoms in the chain are 5.83 and 5.95 Å, respectively. The chains are linked through bridging oxygen atoms of the ligands Cit to form layers. In the centrosymmetric four-membered chelate ring Bi2O2 formed through Bi-O(Cit) bonds, the distances Bi(1)-Bi(1) are equal to 4.55 Å, and Bi(1)-O are 2.66 and 2.84 Å. The Bi-O bond lengths in I are in the range 2.12–3.16 Å. The Cit ligands act as hexadentate chelating/bridging ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号