首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared (IR) thermography is a technique that has the potential to rapidly and noninvasively determine the intensity fields of ultrasound transducers. In the work described here, IR temperature measurements were made in a tissue phantom sonicated with a high-intensity focused ultrasound (HIFU) transducer, and the intensity fields were determined using a previously published mathematical formulation relating intensity to temperature rise at a tissue/air interface. Intensity fields determined from the IR technique were compared with those derived from hydrophone measurements. Focal intensities and beam widths determined via the IR approach agreed with values derived from hydrophone measurements to within a relative difference of less than 10%, for a transducer with a gain of 30, and about 13% for a transducer with a gain of 60. At axial locations roughly 1 cm in front (pre-focal) and behind (post-focal) the focus, the agreement with hydrophones for the lower-gain transducer remained comparable to that in the focal plane. For the higher-gain transducer, the agreement with hydrophones at the pre-focal and post-focal locations was around 40%.  相似文献   

2.
3.
Jensen JA 《Ultrasonics》2000,38(1-8):358-362
Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels are parallel to the skin surface. Angling the transducer will often disturb the flow, and new techniques for finding transverse velocities are needed. The various approaches for determining transverse velocities will be explained. This includes techniques using two-dimensional correlation (speckle tracking), multiple beams, and the new transverse modulation technique. The different advantages and disadvantages of the approaches are explained.  相似文献   

4.
The paper discusses an infrared thermography (IRT) based procedure for quantification of annular air-gap in cylindrical geometries. Different annular air-gaps are simulated using aluminum hollow cylinders and solid stainless steel inserts of varying diameters. The specimens are externally heated using a hot air-gun and the temperature of the specimens are monitored during cooling using an infrared camera. The temperature decay during the cooling cycle follows an exponential profile in all the cases where the decay constant is air-gap dependent. The rate of temperature decay is fastest for the empty cases (without inserts) and lower for smaller air-gaps. The system is analyzed using a lumped system model by measuring the temperature over a time scale significantly higher than the transition time of the lumped system. It is observed that the Biot number of the system is less than unity, allowing analysis of the system in terms of a single time constant, neglecting internal temperature transients. It is observed that the time constant of temperature decay increases with decreasing annular air-gap. An empirical relation between the inverse of time constant of temperature decay and annular air-gaps is established. Using this calibration curve, unknown air-gaps up to 20 μm could be measured with good accuracy. Applications of this newly developed technique include detection of misalignment of concentric machineries and determination of fuel-to-clad gap of nuclear reactor fuels.  相似文献   

5.
A fast and easy method for fault detection in antenna arrays using infrared thermography is presented. A thin, minimally perturbing, microwave absorption screen made of carbon loaded polymer is kept close in front of the faulty array. Electromagnetic waves falling on the screen increase its temperature. This temperature profile on the screen is identical to electric field intensity profile at the screen location. There is no temperature rise observed on the screen corresponding to non-radiating (faulty) elements and hence can be easily detected by IR thermography. The array input power is modulated at a low frequency which permits thermography to detect even weak fields. It also improves the resolution of thermal images. The power fed to the array is only 30 dBm. In order to show the utility of this technique, an example of 14 GHz 4 × 4 patch antenna array is given. The simulations are carried in CST Microwave Studio 2013. A good agreement between simulation and experimental results is observed.  相似文献   

6.
Infrared thermography offers a wide range of possibilities for the detection of flaws in welding, being the main difference among them the thermal excitation of the material. This paper analyzes the application of an inexpensive and versatile thermographic test to the detection of subsurface cracks in welding. The procedure begins with the thermal excitation of the material, following with the monitoring of the cooling process with IRT (InfraRed Thermography). The result is a sequence of frames that enables the extraction of thermal data, useful for the study of the cooling tendencies in the defect and the non-defect zone. Then, each image is subjected to a contour lines algorithm towards the definition of the morphology of the detected defects. This combination of data acquisition and processing allows the differentiation between two types of cracks: toe crack and subsuperficial crack, as defined in the quality standards.  相似文献   

7.
Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.  相似文献   

8.
Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method – infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.  相似文献   

9.
The article presents the results of research developing methods for determining the coefficient of thermal diffusivity of thermal insulating material. This method applies a periodic heating as an excitation and an infrared camera is used to measure the temperature distribution on the surface of tested material. In simulation study, the usefulness of known analytical solution of the inverse problem was examined using a three-dimensional model of the phenomenon of heat diffusion in the sample of tested material. To solve the coefficient inverse problem, an approach using artificial neural network is proposed. The measurements were performed on an experimental setup equipped with a ThermaCAM PM 595 infrared camera and frame grabber. The experiment allowed to verify the chosen 3D model of heat diffusion phenomenon and to determine suitability of the proposed test method.  相似文献   

10.
This work presents a method for measuring the thermal diffusivity of spherical samples using active infrared thermography. The principal novelty of this method lies in the deduction of an analytical model to obtain the spatial and temporal distribution of temperature in spherical samples. The model is obtained from the classical theory of heat conduction or the 3D heat diffusion equation. In order to analyze the behavior of the model, an active infrared thermography is used in order to monitor the spatial and temporal temperature distribution. Three different materials are used as spherical samples and they are heated by radiation increasing this way its temperature. The recorded data is fitted to the model by adjusting the diffusivity parameter. The results of the diffusivity values obtained using this model are consistent with those obtained from a standard thermal properties analyzer.  相似文献   

11.
Monitoring the thermal condition of electrical equipment is necessary for maintaining the reliability of electrical system. The degradation of electrical equipment can cause excessive overheating, which can lead to the eventual failure of the equipment. Additionally, failure of equipment requires a lot of maintenance cost, manpower and can also be catastrophic- causing injuries or even deaths. Therefore, the recognition processof equipment conditions as normal and defective is an essential step towards maintaining reliability and stability of the system. The study introduces infrared thermography based condition monitoring of electrical equipment. Manual analysis of thermal image for detecting defects and classifying the status of equipment take a lot of time, efforts and can also lead to incorrect diagnosis results. An intelligent system that can separate the equipment automatically could help to overcome these problems. This paper discusses an intelligent classification system for the conditions of equipment using neural networks. Three sets of features namely first order histogram based statistical, grey level co-occurrence matrix and component based intensity features are extracted by image analysis, which are used as input data for the neural networks. The multilayered perceptron networks are trained using four different training algorithms namely Resilient back propagation, Bayesian Regulazation, Levenberg–Marquardt and Scale conjugate gradient. The experimental results show that the component based intensity features perform better compared to other two sets of features. Finally, after selecting the best features, multilayered perceptron network trained using Levenberg–Marquardt algorithm achieved the best results to classify the conditions of electrical equipment.  相似文献   

12.
Planar extrinsic sulfur-doped silicon detectors for infrared (IR) semiconductor-discharge gap image converters intended for use in high-speed thermography of remote objects have been developed. The detectors were fabricated by high-temperature diffusion of sulfur into silicon wafers from the vapor phase. The dependence of doping efficiency on the sulfur vapor pressure in the course of diffusion was analyzed. The detector fabrication technology was optimized to meet the specific requirements for their operation in the microdischarge devices considered. The detectors were tested in a laboratory setup comprising a blackbody source of IR light, an image converter, and a pulsed CCD camera for recording the converted images. The converter equipped with the detector can provide imaging of objects heated to a temperature, Tmin  200 °C, with a temporal resolution on the order of 10?6 s and spatial resolution of about 5 lines/mm.  相似文献   

13.
Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content (EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media (P < 0.0001), and that EC and viable counts were strongly positively correlated (r = 0.986) over a range of 120 to approximately 5 × 108 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.  相似文献   

14.
One-dimensional nanostructures such as Ni and Co nanowires (NWs) show anisotropic thermal properties in a direction parallel and perpendicular to the NW axis. Thermal diffusivity of Ni and Co NWs embedded in a 100-nm pore anodic alumina (AAO) template has been measured in a direction perpendicular to the NW axis, using an infrared thermography-based non-contact approach. The measured thermal diffusivity values in the radial direction are 0.728×10−6 and 0.732×10−6 m2s−1, respectively, for the Ni and Co nanocomposites. The changes in the thermal diffusivity of the synthesized NWs alone were estimated using a first-order lower bound model (FOLBM). A nearly seven- and sixfold reduction, respectively, of thermal diffusivity in a direction perpendicular to the NW axis is estimated for the synthesized Ni and Co NWs.  相似文献   

15.
This study was conducted to investigate a possibility of detecting stress corrosion crack defects in a pipe welded with dissimilar metals (STS304 and SA106 Gr. b) through infrared ultrasound thermography and lock-in phase method. The ultrasound generator was set as 250 W in output and 19.8 kHz in frequency. With experiment results, this study could detect, cracks located inside the dissimilar metal weld pipe through lock-in infrared thermography and compare thermography images obtained from both the inside and the outside when the ultrasound vibration was applied to the outer part of the pipe. Besides, after cutting off the pipe in the axial direction, this study conducted PT inspection. As a result, it was found there existed more than a single crack in a certain range inside the pipe, which made hot spots appear in a wide range on the thermography image. Moreover, through ultrasound infrared thermography and lock-in phase method this study verified the possibility of detecting micro-sized shattered cracks through ultrasound thermography, which were not easy to detect with the existing techniques.  相似文献   

16.
超声吸收体的物理参数对利用水听器和红外热成像技术的高强度聚焦超声(High-Intensity Focused Ultrasound,HIFU)声场测量结果具有重要影响。为了探索超声吸收体的物理参数(密度、声速、衰减系数、热扩散系数、定压比热容)对测量结果的影响规律,本文根据层状模型计算出相同声源功率输出时不同物理参数对应的超声吸收体内部声场和热场,利用有限差分法计算出超声吸收体表面在辐照过程中的温度变化;利用基于水听器和红外热成像技术的聚焦声场测量方法测量出焦域内不同位置上声场特征值(轴线声强和-6 dB声束宽度),与通过理论计算得到的声源在纯水中声场特征值进行比较,分析了不同物理参数对测量结果的影响。超声吸收体的声、热学参数中除了声速外,其它物理参数的变化引起声场特征值的测量造成最大相对差异率小于15%。因为声波传播速度的改变会导致超声吸收体内部热场分布变化,使测量结果与理论计算值有较大偏差,其中-6 dB声束宽度和轴线声强最大相对差异率为95.37%和69.97%。因此在选择超声吸收体的声、热学参数时应重点关注声波在吸收体内声速的影响。超声吸收体的声学参数与水的声学参数相近时,可以在焦域内获得较好的测量结果。  相似文献   

17.
In order to manufacture the fibre glass wind blades, one kind of mould embedded with heating wire is used not only for making numerous ‘copies’ of the original sample, and also heating the mould to a certain temperature for curing. The heating wire is embedded in fibre glass as a sandwich structure, and it may break after a long time usage at high temperatures. In this study, a high voltage discharging (HVD) circuit is used to trigger HVD at the breakpoint, which generates heat and therefore causes temperature increase at the corresponding front surface, one infrared camera is used to monitor the temperature evolution. It successfully and quickly detects breakpoints in spar moulds.  相似文献   

18.
Infrared thermography is used for evaluation of the mean temperature as a measure of thermal load during corneal refractive surgery. An experimental method to determine emissivity and to calibrate the thermografic system is presented. In a case study on the porcine eye two dimensional temperature distributions with lateral resolution of 170 μm and line scans with temporal resolution of 13 μs are discussed with respect to the meaning of mean temperature. Using the newest generation of surgery equipment it is shown, that the mean temperature rise can be kept below 5 °C during myopic laser in situ keratomileusis (LASIK) treatments corresponding to an aberration-free correction of ?2.75 diopter.  相似文献   

19.
The article presents results of research developing methods for determining thermal parameters of a thermal insulating material. This method applies periodic heating as an excitation and an infrared camera is used to measure the temperature distribution on the surface of the tested material. The usefulness of known analytical solution of the inverse problem was examined in simulation study, using a three-dimensional model of the heat diffusion phenomenon in the sample of the material under test. To solve the coefficient inverse problem an approach using an artificial neural network is proposed. The measurements were performed on an experimental setup equipped with a ThermaCAM PM 595 infrared camera and a frame grabber. The experiment allowed verification of the chosen 3-D model of the heat diffusion phenomenon and proved suitability of the proposed test method.  相似文献   

20.
Infrared intensities, in particular the dipole derivatives with respect to internal (symmetry) coordinates derived from the intensities, can be explained in terms of an effective atomic charge model which includes both the equilibrium charges and their first-order fluxes. For diatomic molecules it is found that most of the intensity arises from the equilibrium charges in the case of the hydrogen halides, but conversely, in CO, most of the intensity is due to the charge flux. The parameters found can be nicely related to elementary bonding theory.In small symmetrical polyatomic molecules the number of parameters is sufficiently restricted by symmetry and charge conservation that the parameters would be uniquely determinate except for the ambiguity in sign of the experimental dipole derivatives. The examples of AB2 (Dh and C2v), AB3 (D3h and C3v), and AB4 (Td) are discussed in detail; a simple generalization for molecular ions is included.For nonpolar molecules, the effective equilibrium charges are determined by the motion (not the equilibrium value) of the electronic centroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号