首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.  相似文献   

2.
Multiple scattering of incoherent polarized light propagating through a random medium comprised of spheroidal Rayleigh particles is studied using Monte Carlo simulations. Two approaches are taken for the implementation of the simulation: the first uses individual realizations of particle orientation and the second, an accelerated method, averages over the particle orientation. These different methods produce results that are indistinguishable within statistical errors. The depolarization of light is examined in both transmission and backscatter for media comprised of spheroids of different polarizability ratios. In media containing spheroidal particles the depolarization is greater than that for spherical particles. Media containing prolate spheroids are more depolarizing than media comprising oblate particles of the same polarizability ratio. The extra depolarization due to asphericity is much less pronounced in the multiple scattering regime than for single scattering.  相似文献   

3.
Abstract

Multiple scattering of incoherent polarized light propagating through a random medium comprised of spheroidal Rayleigh particles is studied using Monte Carlo simulations. Two approaches are taken for the implementation of the simulation: the first uses individual realizations of particle orientation and the second, an accelerated method, averages over the particle orientation. These different methods produce results that are indistinguishable within statistical errors. The depolarization of light is examined in both transmission and backscatter for media comprised of spheroids of different polarizability ratios. In media containing spheroidal particles the depolarization is greater than that for spherical particles. Media containing prolate spheroids are more depolarizing than media comprising oblate particles of the same polarizability ratio. The extra depolarization due to asphericity is much less pronounced in the multiple scattering regime than for single scattering.  相似文献   

4.
We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey–Greenstein (HG) function for the scattering angle range of 0–90°. In the range of ~90–180°, the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ~90° to 145° but larger from ~145° to 180°.We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.  相似文献   

5.
The applicability of an analog of the extended boundary condition method, which is popular in light-scattering theory, is studied in combination with the standard spherical basis for the solution of an electrostatic problem appearing for spheroidal layered scatterers the sizes of which are small as compared to the incident radiation wavelength. In the case of two or more layers, polarizability and other optical characteristics of particles in the far zone are shown to be undeterminable if the condition under which the appearing systems of linear equations for expansion coefficients of unknown fields are Fredholm systems solvable by the reduction method is broken. For two-layer spheroids with confocal boundaries, this condition is transformed into a simple restriction on the ratio of particle semiaxes a/b< $\sqrt 2 $ + 1. In the case of homogeneous particles, the solvability condition is that the radius of convergence of the internal-field expansion must exceed that of the expansion of an analog of the scattering field. Since homogeneous spheroids (ellipsoids) are unique particles inside which the electrostatic field is homogeneous, it is shown that the solution can be always found in this case. The obtained results make it possible to match in principle the results of theoretical and numerical determinations of the domain of applicability for the extended boundary condition method with a spherical basis for spheroidal scatterers.  相似文献   

6.
The separation of variables method (SVM), which uses a spheroidal basis, is proposed. According to this method, fields are presented in the form of expansion in terms of spheroidal functions. The previously conducted analysis of various methods using a spherical basis showed that the SVM is applicable in a broader area for numerical calculations, while the proposed approach using a spheroidal basis yields reliable results in the case of spheroids with a high degree of asphericity where other methods and approaches cannot be used. Importantly, the method includes an SVM that uses a spherical basis as the limiting case. Thus, the proposed method has all chances of being highly efficient for calculation of optical characteristics of various nonspherical particles in a wide range of parameters of the formulated problem.  相似文献   

7.
An analytic solution to electromagnetic scattering by a spheroidal particle having a spherical inclusion at the center, for oblique incidence of a Gaussian beam, is obtained within the framework of the generalized Lorenz–Mie theory (GLMT). By virtue of a transformation between the spheroidal and spherical vector wave functions, a theoretical procedure is developed to deal with the boundary conditions. Numerical results of the normalized differential scattering cross section are evaluated.  相似文献   

8.
We derive surface-integral expressions for the Q matrices in spheroidal coordinates that allow us to compute the T matrix in spheroidal coordinates. This approach combines the advantages of the null-field method (also referred to as the extended boundary condition method) with those of the separation of variables method. For spheroidal particles we obtain explicit Q matrix expressions that display the expected symmetry properties and yield correct results in the spherical limit. Compared to surface-integral expressions for spheroids in spherical coordinates, our results are considerably simpler because the integrands do not contain radial functions.  相似文献   

9.
We have constructed a solution to the problem of scattering by a nonconfocal multilayer particle. The main difficulty was to join expansions constructed in two spheroidal systems on either side of each boundary. As a result of a detailed consideration of relations between scalar wave spheroidal and spherical functions, we have succeeded in finding a representation of the former in terms of the latter and vice versa. In the final form, the joining of solutions is described by only one matrix, which depends on coefficients of representations of angle spheroidal functions in terms of associated Legendre functions of the first kind. Since the problem has been solved using an approach that involves the method of extended boundary conditions, the dimension of the system for numerical determining unknown coefficients is equal to the number of terms that are taken into account in field expansions and does not depend on the number of particle layers. Previously performed numerical calculations for confocal particles have shown a very high efficiency of the algorithm not only for particles that are close to spheres in shape, but also for strongly prolate and strongly oblate spheroids. In addition, the algorithm makes it possible to calculate optical properties of particles that have dozens of layers.  相似文献   

10.
The problem of light scattering by nonspherical particles, which arises in many applications, is nowadays most frequently solved by the method of extended boundary conditions in combination with the expansion of the fields in terms of spherical wave functions. However, such an approach encounters difficulties if the shape of particles is far from spherically symmetric, even in the simplest case of spheroids with the semiaxis ratio a/b > 5?10. A new approach to solving this problem is proposed, which also applies the extended boundary condition method but involves the expansion of the fields in terms of spheroidal functions. In this case, to obtain effective solutions for strongly prolate and oblate particles, the fields are divided in two parts with known properties and specific scalar potentials are used for each part. The basic relations of the approach are presented and some results of calculations of the optical properties of spheroids and spheroidal Chebyshev particles that are performed using computer codes realizing this approach are given. The convergence of the results for different cases and the domain of applicability of the method are discussed.  相似文献   

11.
This work is devoted to a theoretical study of scattering of light by absorbing and nonabsorbing oriented spheroidal particles in the Wentzel-Kramers-Brillouin (WKB) approximation. Within the framework of the scattering theory, we investigate the form factor and the scattering amplitude for this approximation. The Rayleigh-Gans-Debye theory (RGD), the diffraction approximation (DA), and the anomalous diffraction (AD) are treated as particular cases for nonabsorbing spheroids. To illustrate our formalism, we analyze some numerical examples.  相似文献   

12.
用T矩阵方法计算了折射率虚部的范围在0.001至0.1的几种椭球粒子随机取向时在几种等效尺度参数下的光散射与吸收特性,并与等效的球形粒子的光散射结果进行了比较。分析结果表明:椭球粒子的吸收特性与等效的球形粒子的吸收特性存在着差别,这种差别随粒子的形状、尺度和折射率而改变,考虑到目前气溶胶粒子复折射率虚部的测量精度,以等效的球体粒子处理非球形粒子的吸收不会带来显著的误差。  相似文献   

13.
Light scattering by small dielectric particles of an arbitrary axially symmetric shape is analyzed. A simple approximate expression that governs the polarizability of the particle is found under the assumption of field homogeneity inside of these particles. The expression includes four relatively simple one-dimensional integrals that can be calculated analytically for some types of particles (except for spheroids). A comparison with the numerical data obtained for various Chebyshev particles and finite cylinders showed that the obtained approximation yields acceptable results, even when the shape of scatterers is significantly different from spheroidal. For spheroids, our approximation coincides with the Rayleigh one.  相似文献   

14.
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.  相似文献   

15.
This paper proposes the spheroidal model for analyzing the light scattering characteristics of an air bubble. The angular distributions of light scattered by a large spheroidal bubble with end-on incidence are calculated using geometrical optics approximation. The divergence factor, diffraction, and phase shift are considered in the computation. The MATLAB code was developed and verified using the Mie result for a spherical bubble, and the scattering patterns of the two methods agreed well. The effects on the scattering properties are analyzed in terms of the size and shape parameter of the bubble and the incident beam width. The relations between the deviation angle and incident angle, emergent light intensity, and scattering angle are analyzed and used to explain the scattering patterns of a spheroidal bubble.  相似文献   

16.
韩一平 《物理学报》2005,54(11):5139-5143
提出了一种将任意入射波束因子用矢量波函数展开的方法,根据波束在球坐标系中的展开形式,以及球谐矢量函数与非球坐标系的波矢量函数之间的关系,推导出任意入射波束在相应坐标系中的波束因子的理论表述形式.以椭球坐标系为例,介绍了将离轴的入射波束,用椭球矢量波函数展开的波束因子求解方法,此方法还可应用于柱坐标、椭柱坐标系中波束因子的求解,为研究粒子对任意入射波束的散射打下了基础. 关键词: 波束因子 广义米理论 光散射  相似文献   

17.
The possibility of using metamaterial covers to dramatically enhance the total scattering cross-sections (SCS) or drastically reduce total SCSs of spheroidal objects is presented. The scattering problem by a conducting spheroid with metamaterial coating at axial incidence is studied using an analytic solution by expanding the incident and scattered waves in terms of spheroidal vector wave functions and imposing the appropriate boundary conditions at each spheroidal surface. Numerical results show that the total SCSs of a conducting spheroid with different metamaterial coatings can be dramatically enhanced to achieve 'sub-wavelength resonant structures' or drastically reduced to achieve 'transparency' of objects. The results with different parameters, such as relative permittivity, the spheroidal geometry, and the ratio of semimajor axes of two layers, are provided and discussed.  相似文献   

18.
A generalized Lorenz-Mie theory framework (GLMT) is applied to the study of Gaussian beam scattering by a spherical particle with an embedded spheroid at the center. By virtue of a transformation between the spherical and spheroidal vector wave functions, a theoretical procedure is developed to deal with the boundary conditions. Numerical results of the normalized differential scattering cross section are presented.  相似文献   

19.
Keener JD  Chalut KJ  Pyhtila JW  Wax A 《Optics letters》2007,32(10):1326-1328
We present here the results of a numerical study on light scattering from nonspherical particles with relevance to detecting precancerous states in epithelial tissues. In previous studies of epithelial cell nuclei, the experimental light scattering data have been analyzed by comparison with Mie theory. However, given the spheroidal shape of many cell nuclei, the validity of this assumption demands a thorough investigation. We investigate this assumption by using the T-matrix method to model light scattered from spheroids with parameters relevant to epithelial cell nuclei. In our previous studies, we have developed a data analysis procedure that extracts the oscillatory component of the angular-scattering distribution for an ensemble of epithelial cell nuclei for comparison with Mie theory. We demonstrate that application of our analysis procedure to the predictions of the T-matrix method for spheroids, oriented such that their axis of symmetry is aligned with the incident light propagation direction, generally yields the spheroid dimension that is transverse to the incident light propagation direction with subwavelength accuracy.  相似文献   

20.
An approach to express an incident shaped beam with respect to an arbitrarily oriented spheroidal particle having layers with non-confocal boundaries is presented. To overcome the difficulty of non-confocal boundary conditions connected with different spheroidal coordinate systems, a theoretical procedure is developed to deal with the non-confocal boundary conditions by virtue of a transformation for vector wave functions. The unknown coefficients of scattered and internal electromagnetic fields are determined by solving a system of linear equations derived from the boundary conditions and relations between the spheroidal vector wave functions and spherical ones. Numerical results of the normalized scattering cross section for a two-layered non-confocal prolate spheroid are evaluated. PACS 42.25.Fx; 42.25.Bs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号