首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical characteristics of low-frequency sound waves propagating over long distances in a fluctuating ocean are important for many practical problems. In this paper, using the theory of multiple scattering, the mean field of a low-frequency sound wave was analytically calculated. In these calculations, the ratio of the sound wavelength and the scale of random inhomogeneities can be arbitrary. Furthermore, the correlation function of inhomogeneities is expressed in terms of a modal spectrum (e.g., internal waves modes). The obtained mean sound field is expressed as a sum of normal modes that attenuate exponentially. It is shown that the extinction coefficients of the modes are linearly related to the spectrum of random inhomogeneities in the ocean. Measurements of the extinction coefficients can therefore be used for retrieving this spectrum. The mean sound field is calculated for both 3D and 2D geometries of sound propagation. The results obtained can be used to study the range of applicability of the 2D propagation model.  相似文献   

2.
This paper examines the signal coherence loss due to internal waves in deep water in terms of the signal coherence time and compare to data reported in the literature over the past 35 years. The coherence time of the early raylike arrivals was previously modeled by Munk and Zachariasen ["Sound propagation through a fluctuating stratified ocean: Theory and observation," J. Acoust. Soc. Am. 59, 818-838 (1976)] using the supereikonal approximation and by Dashen et al. ["Path-integral treatment of acoustic mutual coherence functions for arrays in a sound channel," J. Acoust. Soc. Am. 77, 1716-1722 (1985)] using the path integral approach; a -1 [corrected] power frequency dependence and a -1/2 [corrected] power range dependence were predicted. Recent data in shallow water in downward refractive environments with internal waves suggested that the signal coherence time of the mode arrivals follows a -3/2 power frequency dependence and a -1/2 power range dependence. Since the temporal coherence of the acoustic signal is related to the temporal coherence of the internal waves, based on the observation that the (linear) internal waves in deep and shallow waters have a similar frequency spectrum, it is argued that the modelike arrivals in deep water should exhibit a similar frequency dependence in deep and shallow waters. This argument is supported by a brute-force application of the path integral to mode arrivals based on the WKB relation between the ray and mode. It is found that the data are consistent with the -3/2 power frequency dependence but more data are needed to further test the hypothesis.  相似文献   

3.
深海声场特定的干涉结构导致其时间相关性的空间起伏,研究这种空间特性可以为水声信号的探测与处理提供重要参考。利用抛物方程声场仿真模型,联合Monte-Carlo数值方法计算分析了深远海线性内波条件下声场时间相关性的空间分布特性。与现有的研究相比,给出了时间相关性的距离和深度起伏特征。结果表明,当接收达到一定距离,声场时间相关性的空间分布具有与声场干涉条纹类似的结构,声场干涉越强,时间相关性越好。此外,声源频率和声速标准差的变化会引起时间相关性空间分布规律的改变,且会聚区传播模式下的改变强于深海声道传播模式。   相似文献   

4.
Using the narrow-angle and Markov approximations, a formula for the transverse-longitudinal coherence function of a sound field propagating in a turbulent atmosphere with temperature and wind velocity fluctuations is derived. This function, which applies to observation points that are arbitrarily located in space, generalizes the transverse coherence function (coherence when the observation points are in a plane perpendicular to the sound propagation path), which has been studied extensively. The new result is expressed in terms of the transverse coherence function and the extinction coefficient of the mean sound field. The transverse-longitudinal coherence function of a plane sound wave is then calculated and studied in detail for the Gaussian and von Kármán spectra of temperature and wind velocity fluctuations. It is shown, for relatively small propagation distances, that the magnitude of the coherence function decreases in the longitudinal direction but remains almost constant in the transverse direction. On the other hand, for moderate and large propagation distances, the magnitude of the coherence decreases faster in the transverse direction than in the longitudinal. For some parameters of the problem, the coherence function has relatively large local maxima and minima as the transverse and longitudinal coordinates are varied. With small modifications, many results obtained in the paper can be applied to studies of electromagnetic wave propagation in a turbulent atmosphere.  相似文献   

5.
南中国海存在孤立子内波条件下的声场时间相关半径   总被引:3,自引:1,他引:2  
在动态的海洋环境中,由于数据向量和拷贝场之间的失配,匹配场处理器的性能会发生退化。数据向量的时间相关半径是这种退化的一种量度。通过2001年ASIAEX南海实验中垂直阵上水听器接收到的声场数据求取了400 Hz窄带信号的声场时间相关。从实验数据处理结果观察到,伴随着传播路径上非线性内波的进入,声场的时间相关半径减小。同时利用一个二维的平流冻结海洋模型和传播路径上三个温度链的温度数据对声场进行了数值仿真,分析了不同频率下的声场时间相关半径。结果表明:实验结果与仿真的400 Hz信号的声场时间相关较为一致。可见,在时变的海洋环境下,声信道中存在孤立子内波将会使声场的时间相关半径大大缩短。   相似文献   

6.
The coherence function of sound waves propagating through an intermittently turbulent atmosphere is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade (intrinsic intermittency) and spatially uneven production (global intermittency) are modeled using ensembles of quasiwavelets (QWs), which are analogous to turbulent eddies. The intrinsic intermittency is associated with decreasing spatial density (packing fraction) of the QWs with decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence, as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a plane sound wave undergoing line-of-sight propagation. Predictions are made by a general simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in signal phase. It is shown that the average coherence function increases as a result of both intrinsic and global intermittency. When global intermittency is very strong, signal phase fluctuations become highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence.  相似文献   

7.

The propagation of a transient electromagnetic pulse over irregular terrain is considered. We model the wave propagation using the parabolic wave equation, which is valid for near-horizontal propagation. We model the effect of scattering from the rough terrain by introducing a surface-flattening coordinate transform. This coordinate transform simplifies the boundary condition of our problem, and introduces an effective refractive index into our wave equation. As a result, the problem of propagation over an irregular surface becomes equivalent to the problem of propagation through random media. The parabolic equation is solved analytically using the path integral method. Both vertically polarized and horizontally polarized signals are treated. Cumulant expansion is introduced to obtain an approximate expression for the two-frequency mutual coherence function. From the mutual coherence function, spatial and temporal dependence of the propagating signal can be determined. It can be shown that scattering from the irregular surface can cause broadening of the transient signal. This can have a significant impact on the performance of radio communication systems.  相似文献   

8.
The propagation of a noise signal is considered for an arctic-type waveguide with a varying sound speed profile. The profiles used in the calculations differ from each other due to different depth dependences of salinity. The shape of the envelope of the time correlation function is studied for the coherent and reference signals. For the latter, either the replica of the transmitted noise signal or one of the modes propagating in the waveguide is used. A characteristic feature of the proposed technique is the use of the time cross-correlation between the signals that traveled through the same path in the presence of different sound speed profiles. In this case, from the shape of the envelope of the signal correlation function, one can estimate the changes that occur in the sound speed profile on the path of signal propagation.  相似文献   

9.
Results of numerical simulation of the total and coherent sound fields and the coherence parameter for a multimode acoustic signal excited by a monochromatic sound source and propagating in an irregular arctic waveguide are presented. Expressions used as the basis for the algorithm of the sound field calculation by the method of coupled normal modes are given. Both regular and stochastic sound scattering by horizontal inhomogeneities of the bottom, water medium, and ice cover are taken into account. It is found that, in the course of sound propagation in an arctic waveguide, an anomalous variation of the energy coherence parameter of the sound field as a function of distance is observed. This variation manifests itself in the form of local peaks of the field coherence parameter. This fact should be taken into account in both the measurements of the ice cover characteristics by acoustic methods and the evaluation of the efficiency of the operation of receiving arrays.  相似文献   

10.
The propagation of a transient electromagnetic pulse over irregular terrain is considered. We model the wave propagation using the parabolic wave equation, which is valid for near-horizontal propagation. We model the effect of scattering from the rough terrain by introducing a surface-flattening coordinate transform. This coordinate transform simplifies the boundary condition of our problem, and introduces an effective refractive index into our wave equation. As a result, the problem of propagation over an irregular surface becomes equivalent to the problem of propagation through random media. The parabolic equation is solved analytically using the path integral method. Both vertically polarized and horizontally polarized signals are treated. Cumulant expansion is introduced to obtain an approximate expression for the two-frequency mutual coherence function. From the mutual coherence function, spatial and temporal dependence of the propagating signal can be determined. It can be shown that scattering from the irregular surface can cause broadening of the transient signal. This can have a significant impact on the performance of radio communication systems.  相似文献   

11.
Underwater acoustic channels are band-limited and reverberant, posing many obstacles to reliable, phase-coherent acoustic communications. While many high frequency communication experiments have been conducted in shallow water, few have carried out systematic studies on the channel properties at a time scale relevant for communications. To aid communication system design, this paper analyzes at-sea data collected in shallow water under various conditions to illustrate how the ocean environments (sea surface waves and random ocean medium) can affect the signal properties. Channel properties studied include amplitude and phase variations, and temporal coherence of individual paths as well as the temporal and spatial coherence of multipaths at different time scales. Reasons for the coherence loss are hypothesized.  相似文献   

12.
Based on the extended Huygens-Fresnel principle, the mutual coherence function of quasi-monochromatic electromagnetic Gaussian Schell-model (EGSM) beams propagating through turbulent atmosphere is derived analytically. By employing the lateral and the longitudinal coherence length of EGSM beams to characterize the spatial and the temporal coherence of the beams, the behavior of changes in the spatial and the temporal coherence of those beams is studied. The results show that with a fixed set of beam parameters and under particular atmospheric turbulence model, the lateral coherence of an EGSM beam reaches its maximum value as the beam propagates a certain distance in the turbulent atmosphere, then it begins degrading and keeps decreasing along with the further distance. However, the longitudinal coherence length of an EGSM beam keeps unchanging in this propagation. Lastly, a qualitative explanation is given to these results.  相似文献   

13.
The transverse flow of inhomogeneous fluid produces fluctuation of the acoustic signal passing through it. The coherence of frequency-spaced signal fluctuation is related to the advection of the inhomogeneous medium through the sound path, thus providing a basis for the current velocity measurement. This method can be considered to be the "frequency-domain" version of the conventional scintillation approach to the current velocity registration based on the measurement of the signal correlation transmitted from the source to the two separated in space receivers (space-domain scintillation) [S. Clifford and D. Farmer, J. Acoust. Soc. Am. 74, 1826-1832 (1983)]. The sensitivity of the method depends on the features of the ocean fine structure, which is determined mainly by the internal waves and turbulence. To estimate the sensitivity of the multifrequency method of transverse current probing, the coherence function of two signals propagating through a frozen and moving internal wave field and through the turbulence is considered. The application of the multifrequency signal allows estimation of the fine-structure parameters as well as the current velocity.  相似文献   

14.
This paper is based on the unified theory of coherence and polarization of stochastic electromagnetic beams and the extended Huygens–Fresnel principle, combined with the quadratic approximation of Rytov’s phase structure function and the generalized Stokes parameters. We have derived the novel expressions for the cross-spectral density matrix elements and the degree of cross-polarization of a class of elliptically polarized spatially and spectrally partially coherent Electromagnetic Gaussian-Schell model pulse (EGSMP) beams propagating through atmospheric turbulence along a slant path. Additionally, we calculate and analyze the effects of the turbulent intensity, the initial pulse duration, waist width of the beam, the spatial coherence length and temporal coherence length et al. on the polarization properties of fully polarized and partially coherent EGSMP beams. Finally, a comparison of the impact of those factors on the partially polarization beams is made. The results show that the influences of the turbulent intensity, the initial pulse duration, waist width of the beam, the spatial coherence length and temporal coherence length et al. on the polarization properties of fully polarized and partially coherent EGSMP beams are larger. While the effects of those parameters on the partially polarization and partially coherent EGSMP beams are smaller. It is noted that the results of this paper have established sound theoretical basis on the topic of improving performance of the laser system propagating through the atmospheric turbulence.  相似文献   

15.
Second- and fourth-moment mode-amplitude statistics for low-frequency ocean sound propagation through random sound-speed perturbations in a shallow-water environment are investigated using Monte Carlo simulations and a transport theory for the cross-mode coherence matrix. The acoustic observables of mean and mean square intensity are presented and the importance of adiabatic effects and cross-mode coherence decay are emphasized. Using frequencies of 200 and 400 Hz, transport theory is compared with Monte Carlo simulations in a canonical shallow-water environment representative of the summer Mid-Atlantic Bight. Except for ranges less than a horizontal coherence length of the sound structure, the intensity moments from the two calculations are in good agreement. Corrections for the short range behavior are presented. For these frequencies the computed mode coupling rates are extremely small, and the propagation is strongly adiabatic with a rapid decay of cross-mode coherence. Coupling effects are predicted to be important at kilohertz frequencies. Decay of cross-mode coherence has important implications for acoustic interactions with nonlinear internal waves: For the case in which the acoustic path is not at glancing incidence with a nonlinear internal-wave front, adiabatic phase randomizing effects lead to a significantly reduced influence of the nonlinear waves on both mean and mean square intensity.  相似文献   

16.
Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is interpreted as a nonstationary oceanographic waveguide within the water column, preferentially funneling acoustic energy between the thermocline depressions.  相似文献   

17.
Chuan-Xiu Xu 《中国物理 B》2022,31(9):94301-094301
Models based on a parabolic equation (PE) can accurately predict sound propagation problems in range-dependent ocean waveguides. Consequently, this method has developed rapidly in recent years. Compared with normal mode theory, PE focuses on numerical calculation, which is difficult to use in the mode domain analysis of sound propagation, such as the calculation of mode phase velocity and group velocity. To broaden the capability of PE models in analyzing the underwater sound field, a wave mode calculation method based on PE is proposed in this study. Step-split Padé PE recursive matrix equations are combined to obtain a propagation matrix. Then, the eigenvalue decomposition technique is applied to the matrix to extract sound mode eigenvalues and eigenfunctions. Numerical experiments on some typical waveguides are performed to test the accuracy and flexibility of the new method. Discussions on different orders of Padé approximant demonstrate angle limitations in PE and the missing root problem is also discussed to prove the advantage of the new method. The PE mode method can be expanded in the future to solve smooth wave modes in ocean waveguides, including fluctuating boundaries and sound speed profiles.  相似文献   

18.
A simple method is described for evaluating the change in temporal coherence which occurs when a monochromatic light wave traverses a medium the properties of which fluctuate randomly. The degree of second-order coherence is formulated in terms of the amplitude and phase autocorrelation functions which are derived from the photocurrent produced in a light beating experiment. This method makes it possible to evaluate even a small deterioration in temporal coherence which is closely related to the frequency fluctuations in the light wave. The change in temporal coherence of a laser beam propagating through a slowly fluctuating gaseous path has been measured.  相似文献   

19.
 对部分空间和部分光谱相干2维高斯-谢尔模型脉冲光束在自由空间传输的光谱和时间特性做了详细的数值研究。结果表明,部分空间和部分光谱相干高斯-谢尔模型脉冲光束在自由空间传输中发生了光谱移动,光谱移动与场点位置、空间相关长度和时间相干长度有关。在轴上,光谱出现蓝移,相对光谱移动随传输距离的增加而增大,随空间相关长度和时间相干长度的增加而减小,并逐渐趋于一定值。在轴外,光谱出现蓝移和红移,并与空间相关长度和时间相干长度有关。脉冲时间波形不变,对所得主要结果做了物理解释。  相似文献   

20.
The time-frequency Wigner-Ville distribution for a pulsed plane-wave signal propagating in a continuous random medium is found, based on the previously derived modal series expression for the two-frequency coherence function. The theory can address propagation in any homogeneous isotropic random medium, but closed-form expressions are specifically derived for a general power-law medium. Two alternative formulations are presented: a modal-wavefront approach wherein each mode is asymptotically transformed to the time domain and a collective approach wherein the mode series is summed collectively and then transformed to the time domain using pole contributions. The physical interpretation of these two different representations in the time-frequency domain as either a superposition of localized wavefronts or collective excitations is established, and their applications to the calculation of local moments are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号