首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about feeding behavior of wild dugongs (Dugong dugon) because direct measurements of feeding events in the water were scarcely feasible. In this study, the authors achieved the first successful feeding sound monitoring in a seagrass area using a full-band underwater recording system (called automatic underwater sound monitoring system for dugong: AUSOMS-D). In total, 175 feeding sounds were identified in 205 h of recording. Feeding sounds were only detected at night, implying diurnal differences in the feeding behavior of the studied dugong population. Differences in periodicity of feeding sounds suggested that two or more individuals were in the acoustically observable area. Furthermore, a feeding position monitored by two AUSOMS-Ds was used to calculate source levels of dugong feeding sounds. Assuming spherical_propagation, source levels were measured between 70.6 and 79.0 dB rms re 1 microPa/square root of Hz.  相似文献   

2.
To quantitatively examine the diurnal, or tidal, effects on dugong behavior, we employed passive acoustic observation techniques to monitor the animals. Automatic underwater sound monitoring systems for dugongs (AUSOMS-D) were deployed on the sea floor at depths of about 5 m south of Talibong Island, Thailand. The AUSOMS-D recorded underwater sound in stereo at a sampling frequency of 44.1 kHz for more than 116 consecutive hours. Dugong calls were automatically detected by newly developed software with a detection rate of 36.1% and a false alarm rate of 2.9%. In total, 3453 calls were detected during the 164 h of recording. The autocorrelation of the call rate indicated an attendance cycle of about 24 or 25 h, and the most frequent vocalizations were observed from 0300 to 0500 h. The calculated bearings of the sound sources, i.e., dugongs, were used as an indicator to track the relative numbers of dugongs during the monitoring periods.  相似文献   

3.
Male bullfrogs will vocalize in response to playbacks of the mating (advertisement) calls of conspecifics. This behavior was studied in response to playbacks of bullfrog mating calls presented at six different sound intensity levels. The lowest sound intensity level tested (50 dB SPL) was insufficient to evoke calling from any of the animals. Calling was evoked by playback levels of 60 dB SPL and higher. The data suggest that behavioral evoked calling thresholds lie between 50-60 dB SPL for these animals. Playback intensity levels of 80 dB SPL were more effective in evoking responses than were intensity levels up to 20 dB higher or lower. This was true both in terms of the total number of evoked responses and the trial number at which responding ceased. Moreover, significantly less habituation of evoked calling occurred at levels of 80 dB SPL than at higher or lower levels. The data suggest that a sound pressure level of 80 dB represents a behaviorally preferred intensity level for evoked calling in the bullfrog. Field recordings of bullfrog choruses show that the intensity produced by an individual calling male reaches a level of 80 dB SPL at a distance of 1 m. This intensity level is identical to that producing maximal evoked calling in the laboratory.  相似文献   

4.
Accurate parameter estimates relevant to the vocal behavior of marine mammals are needed to assess potential effects of anthropogenic sound exposure including how masking noise reduces the active space of sounds used for communication. Information about how these animals modify their vocal behavior in response to noise exposure is also needed for such assessment. Prior studies have reported variations in the source levels of killer whale sounds, and a more recent study reported that killer whales compensate for vessel masking noise by increasing their call amplitude. The objectives of the current study were to investigate the source levels of a variety of call types in southern resident killer whales while also considering background noise level as a likely factor related to call source level variability. The source levels of 763 discrete calls along with corresponding background noise were measured over three summer field seasons in the waters surrounding the San Juan Islands, WA. Both noise level and call type were significant factors on call source levels (1-40 kHz band, range of 135.0-175.7 dB(rms) re 1 [micro sign]Pa at 1 m). These factors should be considered in models that predict how anthropogenic masking noise reduces vocal communication space in marine mammals.  相似文献   

5.
In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.  相似文献   

6.
The vocal repertoire of Pacific walruses includes underwater sound pulses referred to as knocks and bell-like calls. An extended acoustic monitoring program was performed in summer 2007 over a large region of the eastern Chukchi Sea using autonomous seabed-mounted acoustic recorders. Walrus knocks were identified in many of the recordings and most of these sounds included multiple bottom and surface reflected signals. This paper investigates the use of a localization technique based on relative multipath arrival times (RMATs) for potential behavior studies. First, knocks are detected using a semi-automated kurtosis-based algorithm. Then RMATs are matched to values predicted by a ray-tracing model. Walrus tracks with vertical and horizontal movements were obtained. The tracks included repeated dives between 4.0 m and 15.5 m depth and a deep dive to the sea bottom (53 m). Depths at which bell-like sounds are produced, average knock production rate and source levels estimates of the knocks were determined. Bell sounds were produced at all depths throughout the dives. Average knock production rates varied from 59 to 75 knocks/min. Average source level of the knocks was estimated to 177.6 ± 7.5 dB re 1 μPa peak @ 1 m.  相似文献   

7.
Many acoustic signals in animals include trills, i.e., rapid repetitions of similar elements. Elements within these trills usually are frequency modulated and are degraded by reverberation during long-range transmission. Reverberation primarily affects consecutive elements with the same frequency characteristics and thus imposes a major constraint in the evolution of design and perception of long-range signals containing trills. Here transmission of frequency-unmodulated trills with different element repetition rates was studied. Trills were generated at different frequencies to assess frequency dependence of reverberation and then broadcast under three acoustic conditions--an open field and to assess seasonal changes in transmission properties, a deciduous forest before and after foliage had emerged. Reverberation was quantified at different positions within trills. The results show strong effects of vegetation density (season), transmission distance, frequency, element repetition rate, and element position within the trill on effects of reverberation. The experiments indicate that fast trills transmit less well than slow trills and thus are less effective in long-range communication. They show in particular that selection on trills should not act only on element repetition rate within trills but also on the trill duration as effects of reverberation increased with trill duration.  相似文献   

8.
The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.  相似文献   

9.
Simultaneous audio and video were recorded of a silver perch Bairdiella chrysoura producing its characteristic drumming sound in the field. The background noise contribution to the total sound pressure level is estimated using sounds that occurred between the pulses of the silver perch sound. This background contribution is subtracted from the total sound to give an estimate of the sound pressure level of the individual fish. A silver perch source level in the range 128-135 dB (re: 1 microPa) is obtained using an estimate of the distance between the fish and the hydrophone. The maximum distance at which an individual silver perch could be detected depends on the background sound level as well as the propagation losses. Under the conditions recorded in this study, the maximum detection distance would be 1-7 m from the hydrophone.  相似文献   

10.
An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds.  相似文献   

11.
The precedence effect refers to the fact that humans are able to localize sound in reverberant environments, because the auditory system assigns greater weight to the direct sound (lead) than the later-arriving sound (lag). In this study, absolute sound localization was studied for single source stimuli and for dual source lead-lag stimuli in 4-5 year old children and adults. Lead-lag delays ranged from 5-100 ms. Testing was conducted in free field, with pink noise bursts emitted from loudspeakers positioned on a horizontal arc in the frontal field. Listeners indicated how many sounds were heard and the perceived location of the first- and second-heard sounds. Results suggest that at short delays (up to 10 ms), the lead dominates sound localization strongly at both ages, and localization errors are similar to those with single-source stimuli. At longer delays errors can be large, stemming from over-integration of the lead and lag, interchanging of perceived locations of the first-heard and second-heard sounds due to temporal order confusion, and dominance of the lead over the lag. The errors are greater for children than adults. Results are discussed in the context of maturation of auditory and non-auditory factors.  相似文献   

12.
Loud (195 dB re 1 microPa at 1 m) 75-Hz signals were broadcast with an ATOC projector to measure ocean temperature. Respiratory and movement behaviors of humpback whales off North Kauai, Hawaii, were examined for potential changes in response to these transmissions and to vessels. Few vessel effects were observed, but there were fewer vessels operating during this study than in previous years. No overt responses to ATOC were observed for received levels of 98-109 dB re 1 microPa. An analysis of covariance, using the no-sound behavioral rate as a covariate to control for interpod variation, found that the distance and time between successive surfacings of humpbacks increased slightly with an increase in estimated received ATOC sound level. These responses are very similar to those observed in response to scaled-amplitude playbacks of ATOC signals [Frankel and Clark, Can. J. Zool. 76, 521-535 (1998)]. These similar results were obtained with different sound projectors, in different years and locations, and at different ranges creating a different sound field. The repeatability of the findings for these two different studies indicates that these effects, while small, are robust. This suggests that at least for the ATOC signal, the received sound level is a good predictor of response.  相似文献   

13.
A method for detecting vocalization of giant barred frogs (Mixophyes iteratus) in noisy audio is proposed. Audio recordings from remote wireless sensor nodes were segmented into individual sounds and from each sound a small set of features was extracted. Feature vectors were compared to those of example calls using a Euclidean distance formula as a detection system. The system achieved a sensitivity of 0.85 with specificity of 0.92 when distinguishing M. iteratus calls from other species' calls and sensitivity of 0.88 with specificity 0.82 against background noise.  相似文献   

14.
A variety of animals that communicate by sound emit signals from sites favoring their propagation, thereby increasing the range over which these sounds convey information. A different significance of calling sites has been reported for burrowing frogs Eupsophus emiliopugini from southern Chile: the cavities from which these frogs vocalize amplify conspecific vocalizations generated externally, thus providing a means to enhance the reception of neighbor's vocalizations in chorusing aggregations. In the current study the amplification of vocalizations of a related species, E. calcaratus, is investigated, to explore the extent of sound enhancement reported previously. Advertisement calls broadcast through a loudspeaker placed in the vicinity of a burrow, monitored with small microphones, are amplified by up to 18 dB inside cavities relative to outside. The fundamental resonant frequency of burrows, measured with broadcast noise and pure tones, ranges from 842 to 1836 Hz and is significantly correlated with the burrow's length. Burrows change the spectral envelope of incoming calls by increasing the amplitude of lower relative to higher harmonics. The call amplification effect inside burrows of E. calcaratus parallels the effect reported previously for E. emiliopugini, and indicates that the acoustic properties of calling sites may affect signal reception by burrowing animals.  相似文献   

15.
Two-dimensional sound localization by human listeners   总被引:2,自引:0,他引:2  
This study measured the ability of subjects to localize broadband sound sources that varied in both horizontal and vertical location. Brief (150 ms) sounds were presented in a free field, and subjects reported the apparent stimulus location by turning to face the sound source; head orientation was measured electromagnetically. Localization of continuous sounds also was tested to estimate errors in the motor act of orienting with the head. Localization performance was excellent for brief sounds presented in front of the subject. The smallest errors, averaged across subjects, were about 2 degrees and 3.5 degrees in the horizontal and vertical dimensions, respectively. The sizes of errors increased, for more peripheral stimulus locations, to maxima of about 20 degrees. Localization performance was better in the horizontal than in the vertical dimension for stimuli located on or near the frontal midline, but the opposite was true for most stimuli located further peripheral. Front/back confusions occurred in 6% of trials; the characteristics of those responses suggest that subjects derived horizontal localization information principally from interaural difference cues. The generally high level of performance obtained with the head orientation technique argues for its utility in continuing studies of sound localization.  相似文献   

16.
This study investigates the use of chirp stimuli to compensate for the cochlear traveling wave delay. The temporal dispersion in the cochlea is given by the traveling time, which in this study is estimated from latency-frequency functions obtained from (1) a cochlear model, (2) tone-burst auditory brain stem response (ABR) latencies, (3) and narrow-band ABR latencies. These latency-frequency functions are assumed to reflect the group delay of a linear system that modifies the phase spectrum of the applied stimulus. On the basis of this assumption, three chirps are constructed and evaluated in 49 normal-hearing subjects. The auditory steady-state responses to these chirps and to a click stimulus are compared at two levels of stimulation (30 and 50 dB nHL) and a rate of 90s. The chirps give shorter detection time and higher signal-to-noise ratio than the click. The shorter detection time obtained by the chirps is equivalent to an increase in stimulus level of 20 dB or more. The results indicate that a chirp is a more efficient stimulus than a click for the recording of early auditory evoked responses in normal-hearing adults using transient sounds at a high rate of stimulation.  相似文献   

17.
The sounds of a big-snout croaker, Johnius macrorhynus, produced under hand-held and voluntary conditions (in a large aquarium and in the field) were compared. Voluntary calls included "purr" and "dual-knocks", only purrs were produced when the fish was hand-held. The purr is composed of pulses in which the first interpulse interval was six to nine times longer than the other interpulse intervals, which were approximate in duration, and is a unique sound type in the coastal water of Taiwan. Purrs emitted under these conditions did not differ significantly, suggesting that the hand-held sound can be employed to match the sound in the field. These sounds contained energy reaching 5 kHz, with two peaks at about 1 and 2 kHz-the former being the dominant frequency. First interpulse interval, main interpulse interval, repetition rate of pulse, and pulse duration may serve as the diagnostic characters for the species-specific sound (i.e., purrs). One specimen survived in a large aquarium for 6 months and its vocal activity was monitored. The fish produced fewer dual-knocks than purrs, and purrs were about 11 dB louder than dual-knocks emitted in the aquarium. The temporal sequential relationship of these types in the sound of this individual was described.  相似文献   

18.
Vocal characteristics of pygmy blue whales of the eastern Indian Ocean population were analyzed using data from a hydroacoustic station deployed off Cape Leeuwin in Western Australia as part of the Comprehensive Nuclear-Test-Ban Treaty monitoring network, from two acoustic observatories of the Australian Integrated Marine Observing System, and from individual sea noise loggers deployed in the Perth Canyon. These data have been collected from 2002 to 2010, inclusively. It is shown that the themes of pygmy blue whale songs consist of ether three or two repeating tonal sounds with harmonics. The most intense sound of the tonal theme was estimated to correspond to a source level of 179 ± 2 dB re 1 μPa at 1 m measured for 120 calls from seven different animals. Short-duration calls of impulsive downswept sound from pygmy blue whales were weaker with the source level estimated to vary between 168 to 176 dB. A gradual decrease in the call frequency with a mean rate estimated to be 0.35 ± 0.3 Hz/year was observed over nine years in the frequency of the third harmonic of tonal sound 2 in the whale song theme, which corresponds to a negative trend of about 0.12 Hz/year in the call fundamental frequency.  相似文献   

19.
The potential negative effects of sound, particularly active sonar, on marine mammals has received considerable attention in the past decade. Numerous behavioral response studies are ongoing around the world to examine such direct exposures. However, detailed aspects of the acoustic field (beyond simply exposure level) in the vicinity of sonar operations both during real operations and experimental exposures have not been regularly measured. For instance, while exposures are typically repeated and intermittent, there is likely a gradual decay of the intense sonar ping due to reverberation that has not been well described. However, it is expected that the sound field between successive sonar pings would exceed natural ambient noise within the sonar frequency band if there were no sonar activity. Such elevated sound field between the pings may provide cues to nearby marine mammals on source distances, thus influencing potential behavioral response. Therefore, a good understanding of the noise field in these contexts is important to address marine mammal behavioral response to MFAS exposure. Here we investigate characteristics of the sound field during a behavioral response study off California using drifting acoustic recording buoys. Acoustic data were collected before, during, and after playbacks of simulated mid-frequency active sonar (MFAS). An incremental computational method was developed to quantify the inter-ping sound field during MFAS transmissions. Additionally, comparisons were made between inter-ping sound field and natural background in three distinctive frequency bands: low-frequency (<3 kHz), MFA-frequency (3–4.5 kHz), and high-frequency (>4.5 kHz) bands. Results indicate significantly elevated sound pressure levels (SPLs) in the inter-ping interval of the MFA-frequency band compared to natural background levels before and after playbacks. No difference was observed between inter-ping SPLs and natural background levels in the low- and high-frequency bands. In addition, the duration of elevated inter-ping sound field depends on the MFAS source distance. At a distance of 900–1300 m from the source, inter-ping sound field at the exposure frequency is observed to remain 5 dB above natural background levels for approximately 15 s, or 65%, of the entire inter-ping interval. However, at a distance of 2000 m, the 5 dB elevation of the inter-ping SPLs lasted for just 7 s, or 30% of the inter-ping interval. The prolonged elevation of sound field beyond the brief sonar ping at such large distances is most likely due to volume reverberation of the marine environment, although multipath propagation may also contribute to this.  相似文献   

20.
This experiment measured the capability of hearing-impaired individuals to discriminate differences in the cues to the distance of spoken sentences. The stimuli were generated synthetically, using a room-image procedure to calculate the direct sound and first 74 reflections for a source placed in a 7 x 9 m room, and then presenting each of those sounds individually through a circular array of 24 loudspeakers. Seventy-seven listeners participated, aged 22-83 years and with hearing levels from -5 to 59 dB HL. In conditions where a substantial change in overall level due to the inverse-square law was available as a cue, the elderly hearing-impaired listeners did not perform any different from control groups. In other conditions where that cue was unavailable (so leaving the direct-to-reverberant relationship as a cue), either because the reverberant field dominated the direct sound or because the overall level had been artificially equalized, hearing-impaired listeners performed worse than controls. There were significant correlations with listeners' self-reported distance capabilities as measured by the "Speech, Spatial, and Qualities of Hearing" questionnaire [S. Gatehouse and W. Noble, Int. J. Audiol. 43, 85-99 (2004)]. The results demonstrate that hearing-impaired listeners show deficits in the ability to use some of the cues which signal auditory distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号