首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study spin glasses on random lattices with finite connectivity. In the infinite connectivity limit they reduce to the Sherrington Kirkpatrick model. In this paper we investigate the expansion around the high connectivity limit. Within the replica symmetry breaking scheme at two steps, we compute the free energy at the first order in the expansion in inverse powers of the average connectivity (z), both for the fixed connectivity and for the fluctuating connectivity random lattices. It is well known that the coefficient of the 1/z correction for the free energy is divergent at low temperatures if computed in the one step approximation. We find that this annoying divergence becomes much smaller if computed in the framework of the more accurate two steps breaking. Comparing the temperature dependance of the coefficients of this divergence in the replica symmetric, one step and two steps replica symmetry breaking, we conclude that this divergence is an artefact due to the use of a finite number of steps of replica symmetry breaking. The 1/z expansion is well defined also in the zero temperature limit. Received 15 July 2002 Published online 31 December 2002  相似文献   

2.
We study the graph coloring problem over random graphs of finite average connectivity c. Given a number q of available colors, we find that graphs with low connectivity admit almost always a proper coloring, whereas graphs with high connectivity are uncolorable. Depending on q, we find the precise value of the critical average connectivity c(q). Moreover, we show that below c(q) there exists a clustering phase c in [c(d),c(q)] in which ground states spontaneously divide into an exponential number of clusters and where the proliferation of metastable states is responsible for the onset of complexity in local search algorithms.  相似文献   

3.
We study the vertex cover problem on finite connectivity random graphs by zero-temperature cavity method. The minimum vertex cover corresponds to the ground state(s) of a proposed Ising spin model. When the connectivity c > e = 2.718282, there is no state for this system as the reweighting parameter y, which takes a similar role as the inverse temperature β in conventional statistical physics, approaches infinity; consequently the ground state energy is obtained at a finite value of y when the free energy function attains its maximum value. The minimum vertex cover size at given c is estimated using population dynamics and compared with known rigorous bounds and numerical results. The backbone size is also calculated. Received 11 November 2002 Published online 1st April 2003 RID="a" ID="a"e-mail: zhou@mpikg-golm.mpg.de  相似文献   

4.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

5.
We consider a tapping dynamics, analogous to that in experiments on granular media, on spin glasses and ferromagnets on random thin graphs. Between taps, zero temperature single spin flip dynamics takes the system to a metastable state. Tapping corresponds to flipping simultaneously any spin with probability p. This dynamics leads to a stationary regime with a steady state energy E(p). We analytically solve this dynamics for the one-dimensional ferromagnet and +/-J spin glass. Numerical simulations for spin glasses and ferromagnets of higher connectivity are carried out; in particular, we find a novel first order transition for the ferromagnetic systems.  相似文献   

6.
We study both numerically and analytically what happens to a random graph of average connectivity α when its leaves and their neighbors are removed iteratively up to the point when no leaf remains. The remnant is made of isolated vertices plus an induced subgraph we call the core. In the thermodynamic limit of an infinite random graph, we compute analytically the dynamics of leaf removal, the number of isolated vertices and the number of vertices and edges in the core. We show that a second order phase transition occurs at α = e = 2.718 ... : below the transition, the core is small but above the transition, it occupies a finite fraction of the initial graph. The finite size scaling properties are then studied numerically in detail in the critical region, and we propose a consistent set of critical exponents, which does not coincide with the set of standard percolation exponents for this model. We clarify several aspects in combinatorial optimization and spectral properties of the adjacency matrix of random graphs. Received 31 January 2001 and Received in final form 26 June 2001  相似文献   

7.
We study the spin triplet pairing superconducting states of the itinerant Ising model. The spin and spatial symmetries of the states are explored. We find that only a restricted set of spin symmetry states are allowed, while an infinite number of spatial symmetry states exist. The spin triplet pairing states can either be gapless or have finite energy gaps, but all spin triplet pairing states have the sameT c .The free energies of spin triplet and spin singlet pairing states are calculated and compared.  相似文献   

8.
We extend the random anisotropy nematic spin model to study nematic-isotropic transitions in porous media. A complete phase diagram is obtained. In the limit of relative low randomness the existence of a triple point is predicted. For relatively large randomness we have found a depression in temperature at the transition, together with a first order transition which ends at a tricritical point, beyond which the transition becomes continuous. We use this model to investigate the motion of the nematic-isotropic interface. We assume the system to be isothermal and initially quenched into the metastable régime of the isotropic phase. Using an appropriate form of the free energy density we obtain the domain wall solutions of the time-dependent Ginzburg-Landau equation. We find that including a random field leads to smaller velocity of the interface and to larger interface width. Received 12 November 1998 and Received in final form 15 March 1999  相似文献   

9.
We study the zero-temperature spin fluctuations of a two-dimensional itinerant-electron system with an incommensurate magnetic ground state described by a single-band Hubbard Hamiltonian. We introduce the (broken-symmetry) magnetic phase at the mean-field (Hartree-Fock) level through a spiral spin configuration with characteristic wave vector Q different in general from the antiferromagnetic wave vector Q AF, and consider spin fluctuations over and above it within the electronic random-phase (RPA) approximation. We obtain a closed system of equations for the generalized wave vector and frequency dependent susceptibilities, which are equivalent to the ones reported recently by Brenig. We obtain, in addition, analytic results for the spin-wave dispersion relation in the strong-coupling limit of the Hubbard Hamiltonian and find that at finite doping the spin-wave dispersion relation has a hybrid form between that associated with the (localized) Heisenberg model and that associated with the (long-range) RKKY exchange interaction. We also find an instability of the spin-wave spectrum in a finite region about the center of the Brillouin zone, which signals a physical instability toward a different spin- or, possibly, charge-ordered phase, as, for example, the stripe structures observed in the high-T c materials. We expect, however, on physical grounds that for wave vectors external to this region the spin-wave spectrum that we have determined should survive consideration of more sophisticated mean-field solutions. Received 15 September 2000  相似文献   

10.
Simplified double-exchange model including transfer of the itinerant electrons with spin parallel to the localized spin in the same site and the indirect interaction J of kinetic type between localized spins is comprihensively investigated. The model is exactly solved in infinite dimensions. The exact equations describing the main ordered phases (ferromagnetic and antiferromagnetic) are obtained for the Bethe lattice with (z is the coordination number) in analytical form. The exact expression for the generalized paramagnetic susceptibility of the localized-spin subsystem is also obtained in analytical form. It is shown that temperature dependence of the uniform and the staggered susceptibilities has deviation from Curie-Weiss law. Dependence of Curie and Néel temperatures on itinerant-electron concentration is discussed to study instability conditions of the paramagnetic phase. Anomalous temperature behaviour of the chemical potential, the thermopower and the specific heat is investigated near the Curie point. It is found for J=0 that the system is unstable towards temperature phase separation between ferromagnetic and paramagnetic states. A phase separation connected with antiferromagnetic and the paramagnetic phases can occur only at . Zero-temperature phase diagram including the phase separation between ferromagnetic and antiferromagnetic states is given. Received 28 May 1999 and Received in final form 14 July 1999  相似文献   

11.
We numerically extract large-scale excitations above the ground state in the 3-dimensional Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agreement with the mean field picture. Of further interest are the position-space properties of these excitations. First, our study of their topological properties show that the majority of the large-scale excitations are sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when the system size is increased. We conclude that either finite size effects are very large even when the spin overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified. Received 14 August 2000  相似文献   

12.
The concept of frustrated phase separation is applied to investigate its consequences for the electronic structure of the high T c cuprates. The resulting incommensurate charge density wave (CDW) scattering is most effective in creating local gaps in k-space when the scattering vector connects states with equal energy. Starting from an open Fermi surface we find that the resulting CDW is oriented along the (10)- and (or) (01)-direction which allows for a purely one-dimensional or a two-dimensional “eggbox type” charge modulation. In both cases the van Hove singularities are substantially enhanced, and the spectral weight of Fermi surface states near the M-points, tends to be suppressed. Remarkably, a leading edge gap arises near these points, which, in the eggbox case, leaves finite arcs of the Fermi surface gapless. We discuss our results with repect to possible consequences for photoemission experiments. Received 14 June 1999  相似文献   

13.
When averages over all starting points are considered, the type problem for the recurrence or transience of a simple random walk on an inhomogeneous network in general differs from the usual “local" type problem. This difference leads to a new classification of inhomogeneous discrete structures in terms of recurrence and transience on the average, describing their large scale topology from a “statistical" point of view. In this paper we analyze this classification and the properties connected to it, showing how the average behavior affects the thermodynamic properties of statistical models on graphs. Received 8 October 1999  相似文献   

14.
The spectral properties of the Laplacian operator on “small-world” lattices, that is mixtures of unidimensional chains and random graphs structures are investigated numerically and analytically. A transfer matrix formalism including a self-consistent potential à la Edwards is introduced. In the extended region of the spectrum, an effective medium calculation provides the density of states and pseudo relations of dispersion for the eigenmodes in close agreement with the simulations. Localization effects, which are due to connectivity fluctuations of the sites are shown to be quantitatively described by the single defect approximation recently introduced for random graphs. Received 23 March 1999  相似文献   

15.
We study the spin dependent transport through a quantum dot connected to ferromagnetic leads. Using the non-equilibrium generalization of the non-crossing approximation for finite Coulomb repulsion U, we compute the spin polarized conductance, the local average occupancies and the local densities of states in the Kondo regime. We show that transport properties are strongly affected if we allow double occupancy by using a finite value for U. In the framework of our model, we have successfully reproduced the recent experimental finding of an electrically controlled magnetic moment on a carbon nanotube quantum dot coupled to ferromagnetic nickel leads [3]. Besides, in addition to the well known splitting of the Kondo peak in the density of states due to the presence of ferromagnetic leads, we find that the additional splitting due to non-zero bias voltage leads to an unexpected increase of the total conductance, which has also been observed by Hauptmann et al.  相似文献   

16.
Ground states of three-dimensional Ising spin glasses are calculated for sizes up to 143 using a combination of a genetic algorithm and cluster-exact approximation. For each realization several independent ground states are obtained. Then, by applying ballistic search and T=0Monte-Carlo simulations, it is ensured that each ground state appears with the same probability. Consequently, the results represent the true T=0 thermodynamic behavior. The distribution P(|q|) of overlaps is evaluated. For increasing size the width of P(|q|) and the fraction of the distribution below converge to zero. This indicates that for the infinite system P(|q|) is a delta function, in contrast to previous results. Thus, the ground-state behavior is dominated by few large clusters of similar ground states. Received 17 June 1999  相似文献   

17.
We study the dynamics of macroscopic observables such as the magnetization and the energy per degree of freedom in Ising spin models on random graphs of finite connectivity, with random bonds and/or heterogeneous degree distributions. To do so, we generalize existing versions of dynamical replica theory and cavity field techniques to systems with strongly disordered and locally treelike interactions. We illustrate our results via application to, e.g., +/-J spin glasses on random graphs and of the overlap in finite connectivity Sourlas codes. All results are tested against Monte Carlo simulations.  相似文献   

18.
The low-temperature phase of discontinuous mean-field spin glasses is generally described by a one-step replica symmetry breaking (1RSB) ansatz. The Gardner transition, i.e. a very-low-temperature phase transition to a full replica symmetry breaking (FRSB) phase, is often regarded as an inessential, and somehow exotic phenomenon. In this paper we show that the metastable states which are relevant for the out-of-equilibrium dynamics of such systems are always in a FRSB phase. The only exceptions are (to the best of our knowledge) the p-spin spherical model and the random energy model (REM). We also discuss the consequences of our results for aging dynamics and for local search algorithms in hard combinatorial problems. Received 10 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: Federico.Ricci@roma1.infn.it RID="b" ID="b"UMR 8549, Unité Mixte de Recherche du Centre National de la Recherche Scientifique et de l' école Normale Supérieure  相似文献   

19.
In this paper we report on measurements of the nonlinear refractive index n2 at 1047 nm of various fluoride-phosphate laser glasses relative to fused silica using degenerate four-wave mixing. We find good agreement with empirical estimates obtained from the d-line linear refractive index and the Abbe number for pure fluoride-phosphate glasses. Significant increase of n2 is observed when adding sulfate and niobium oxide to the glass composition offering tailorable nonlinear properties for glasses employed in short pulse laser oscillators. Received: 27 December 1999 / Published online: 24 March 2000  相似文献   

20.
In this paper we study the critical properties of a finite dimensional generalization of the p-spin model. We find evidence that in dimension three, contrary to its mean field limit, the glass transition is associated to a diverging susceptibility (and correlation length). Received 13 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号