首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new breakdown-free preconditioning technique, called SAINV-NS, of the AINV method of Benzi and Tuma for nonsymmetric positive definite matrices. The resulting preconditioner which is an incomplete factorization of the inverse of a nonsymmetric matrix will be used as an explicit right preconditioner for QMR, BiCGSTAB and GMRES(m) methods. The preconditoner is reliable (pivot breakdown can not occur) and effective at reducing the number of iterations. Some numerical experiments on test matrices are presented to show the efficiency of the new method and comparing to the AINV-A algorithm.  相似文献   

2.
Two iteration methods are proposed to solve real nonsymmetric positive definite Toeplitz systems of linear equations. These methods are based on Hermitian and skew-Hermitian splitting (HSS) and accelerated Hermitian and skew-Hermitian splitting (AHSS). By constructing an orthogonal matrix and using a similarity transformation, the real Toeplitz linear system is transformed into a generalized saddle point problem. Then the structured HSS and the structured AHSS iteration methods are established by applying the HSS and the AHSS iteration methods to the generalized saddle point problem. We discuss efficient implementations and demonstrate that the structured HSS and the structured AHSS iteration methods have better behavior than the HSS iteration method in terms of both computational complexity and convergence speed. Moreover, the structured AHSS iteration method outperforms the HSS and the structured HSS iteration methods. The structured AHSS iteration method also converges unconditionally to the unique solution of the Toeplitz linear system. In addition, an upper bound for the contraction factor of the structured AHSS iteration method is derived. Numerical experiments are used to illustrate the effectiveness of the structured AHSS iteration method.  相似文献   

3.
The present paper investigates the approach mentioned, but not developed, in [Benzi, Tuma, Numer. Linear Algebra Appl. 10 (2003)]. In this approach, using a conjugate Gram–Schmidt algorithm, an ILU preconditioner whose existence is guaranteed for any nonsingular (symmetric and nonsymmetric) real positive definite matrix is obtained. Numerical results on some nonsymmetric positive definite matrices demonstrate the efficiency of the method.  相似文献   

4.
Summary. Let where is a positive definite matrix and is diagonal and nonsingular. We show that if the condition number of is much less than that of then we can use algorithms based on the Cholesky factorization of to compute the eigenvalues of to high relative accuracy more efficiently than by Jacobi's method. The new methods are generally slower than tridiagonalization methods (which do not deliver the eigenvalues to maximal relative accuracy) but can be up to 4 times faster when the condition number of is very large. Received April 13, 1995  相似文献   

5.
Summary The acceleration by Tchebychev iteration for solving nonsymmetric eigenvalue problems is dicussed. A simple algorithm is derived to obtain the optimal ellipse which passes through two eigenvalues in a complex plane relative to a reference complex eigenvalue. New criteria are established to identify the optimal ellipse of the eigenspectrum. The algorithm is fast, reliable and does not require a search for all possible ellipses which enclose the spectrum. The procedure is applicable to nonsymmetric linear systems as well.  相似文献   

6.
Summary. We study the convergence of two-stage iterative methods for solving symmetric positive definite (spd) systems. The main tool we used to derive the iterative methods and to analyze their convergence is the diagonally compensated reduction (cf. [1]). Received December 11, 1997 / Revised version received March 25, 1999 / Published online May 30, 2001  相似文献   

7.
The problem of solving linear equations with a Toeplitz matrix appears in many applications. Often is positive definite but ill-conditioned with many small eigenvalues. In this case fast and superfast algorithms may show a very poor behavior or even break down. In recent papers the transformation of a Toeplitz matrix into a Cauchy-type matrix is proposed. The resulting new linear equations can be solved in operations using standard pivoting strategies which leads to very stable fast methods also for ill-conditioned systems. The basic tool is the formulation of Gaussian elimination for matrices with low displacement rank. In this paper, we will transform a Hermitian Toeplitz matrix into a Cauchy-type matrix by applying the Fourier transform. We will prove some useful properties of and formulate a symmetric Gaussian elimination algorithm for positive definite . Using the symmetry and persymmetry of we can reduce the total costs of this algorithm compared with unsymmetric Gaussian elimination. For complex Hermitian , the complexity of the new algorithm is then nearly the same as for the Schur algorithm. Furthermore, it is possible to include some strategies for ill-conditioned positive definite matrices that are well-known in optimization. Numerical examples show that this new algorithm is fast and reliable. Received March 24, 1995 / Revised version received December 13, 1995  相似文献   

8.
For various applications, it is well-known that the deflated ICCG is an efficient method for solving linear systems with invertible coefficient matrix. We propose two equivalent variants of this deflated ICCG which can also solve linear systems with singular coefficient matrix, arising from discretization of the discontinuous Poisson equation with Neumann boundary conditions. It is demonstrated both theoretically and numerically that the resulting methods accelerate the convergence of the iterative process.  相似文献   

9.
Summary We present here a new hybrid method for the iterative solution of large sparse nonsymmetric systems of linear equations, say of the formAx=b, whereA N, N , withA nonsingular, andb N are given. This hybrid method begins with a limited number of steps of the Arnoldi method to obtain some information on the location of the spectrum ofA, and then switches to a Richardson iterative method based on Faber polynomials. For a polygonal domain, the Faber polynomials can be constructed recursively from the parameters in the Schwarz-Christoffel mapping function. In four specific numerical examples of non-normal matrices, we show that this hybrid algorithm converges quite well and is approximately as fast or faster than the hybrid GMRES or restarted versions of the GMRES algorithm. It is, however, sensitive (as other hybrid methods also are) to the amount of information on the spectrum ofA acquired during the first (Arnoldi) phase of this procedure.  相似文献   

10.
We present a numerical algorithm for computing the implicit QR factorization of a product of three matrices, and we illustrate the technique by applying it to the generalized total least squares and the restricted total least squares problems. We also demonstrate how to take advantage of the block structures of the underlying matrices in order to reduce the computational work.  相似文献   

11.
In this paper, on the basis of matrix splitting, two preconditioners are proposed and analyzed, for nonsymmetric saddle point problems. The spectral property of the preconditioned matrix is studied in detail. When the iteration parameter becomes small enough, the eigenvalues of the preconditioned matrices will gather into two clusters—one is near (0,0) and the other is near (2,0)—for the PPSS preconditioner no matter whether A is Hermitian or non-Hermitian and for the PHSS preconditioner when A is a Hermitian or real normal matrix. Numerical experiments are given, to illustrate the performances of the two preconditioners.  相似文献   

12.
Linear systems in saddle point form are usually highly indefinite,which often slows down iterative solvers such as Krylov subspace methods. It has been noted by several authors that negating the second block row of a symmetric indefinite saddle point matrix leads to a nonsymmetric matrix ${{\mathcal A}}Linear systems in saddle point form are usually highly indefinite,which often slows down iterative solvers such as Krylov subspace methods. It has been noted by several authors that negating the second block row of a symmetric indefinite saddle point matrix leads to a nonsymmetric matrix whose spectrum is entirely contained in the right half plane. In this paper we study conditions so that is diagonalizable with a real and positive spectrum. These conditions are based on necessary and sufficient conditions for positive definiteness of a certain bilinear form,with respect to which is symmetric. In case the latter conditions are satisfied, there exists a well defined conjugate gradient (CG) method for solving linear systems with . We give an efficient implementation of this method, discuss practical issues such as error bounds, and present numerical experiments. In memory of Gene Golub (1932–2007), our wonderful friend and colleague, who had a great interest in the conjugate gradient method and the numerical solution of saddle point problems. The work of J?rg Liesen was supported by the Emmy Noether-Program and the Heisenberg-Program of the Deutsche Forschungsgemeinschaft.  相似文献   

13.
A preconditioned conjugate gradient method is applied to finite element discretizations of some nonsymmetric elliptic systems. Mesh independent superlinear convergence is proved, which is an extension of a similar earlier result from a single equation to systems. The proposed preconditioning method involves decoupled preconditioners, which yields small and parallelizable auxiliary problems.  相似文献   

14.
Summary. In this paper, the multilevel ILU (MLILU) decomposition is introduced. During an incomplete Gaussian elimination process new matrix entries are generated such that a special ordering strategy yields distinct levels. On these levels, some smoothing steps are computed. The MLILU decomposition exists and the corresponding iterative scheme converges for all symmetric and positive definite matrices. Convergence rates independent of the number of unknowns are shown numerically for several examples. Many numerical experiments including unsymmetric and anisotropic problems, problems with jumping coefficients as well as realistic problems are presented. They indicate a very robust convergence behavior of the MLILU method. Received June 13, 1997 / Revised version received March 17, 1998  相似文献   

15.
16.
Summary Two variants of modified incomplete block-matrix factorization with additive correction are proposed for the iterative solution of large linear systems of equations. Both rigorous theoretical support and numerical evidence are given displaying their efficiency when applied to discrete second order partial differential equations (PDEs), even in the case of quasi-singular problems.Research supported by the A.B.O.S. (A.G.C.D.) under project 11, within the co-operation between Belgium and Zaire  相似文献   

17.
Standard Galerkin finite element methods or finite difference methods for singular perturbation problems lead to strongly unsymmetric matrices, which furthermore are in general notM-matrices. Accordingly, preconditioned iterative methods such as preconditioned (generalized) conjugate gradient methods, which have turned out to be very successful for symmetric and positive definite problems, can fail to converge or require an excessive number of iterations for singular perturbation problems.This is not so much due to the asymmetry, as it is to the fact that the spectrum can have both eigenvalues with positive and negative real parts, or eigenvalues with arbitrary small positive real parts and nonnegligible imaginary parts. This will be the case for a standard Galerkin method, unless the meshparameterh is chosen excessively small. There exist other discretization methods, however, for which the corresponding bilinear form is coercive, whence its finite element matrix has only eigenvalues with positive real parts; in fact, the real parts are positive uniformly in the singular perturbation parameter.In the present paper we examine the streamline diffusion finite element method in this respect. It is found that incomplete block-matrix factorization methods, both on classical form and on an inverse-free (vectorizable) form, coupled with a general least squares conjugate gradient method, can work exceptionally well on this type of problem. The number of iterations is sometimes significantly smaller than for the corresponding almost symmetric problem where the velocity field is close to zero or the singular perturbation parameter =1.The 2 nd author's research was sponsored by Control Data Corporation through its PACER fellowship program.The 3 rd author's research was supported by the Netherlands organization for scientific research (NWO).On leave from the Institute of Mathematics, Academy of Science, 1090 Sofia, P.O. Box 373, Bulgaria.  相似文献   

18.
Important matrix-valued functions f (A) are, e.g., the inverse A −1, the square root and the sign function. Their evaluation for large matrices arising from pdes is not an easy task and needs techniques exploiting appropriate structures of the matrices A and f (A) (often f (A) possesses this structure only approximately). However, intermediate matrices arising during the evaluation may lose the structure of the initial matrix. This would make the computations inefficient and even infeasible. However, the main result of this paper is that an iterative fixed-point like process for the evaluation of f (A) can be transformed, under certain general assumptions, into another process which preserves the convergence rate and benefits from the underlying structure. It is shown how this result applies to matrices in a tensor format with a bounded tensor rank and to the structure of the hierarchical matrix technique. We demonstrate our results by verifying all requirements in the case of the iterative computation of A −1 and . This work was performed during the stay of the third author at the Max-Planck-Institute for Mathematics in the Sciences (Leipzig) and also supported by the Russian Fund of Basic Research (grants 05-01-00721, 04-07-90336) and a Priority Research Grant of the Department of Mathematical Sciences of the Russian Academy of Sciences.  相似文献   

19.
In this paper, we consider backward errors in the eigenproblem of symmetric centrosymmetric and symmetric skew-centrosymmetric matrices. By making use of the properties of symmetric centrosymmetric and symmetric skew-centrosymmetric matrices, we derive explicit formulae for the backward errors of approximate eigenpairs.  相似文献   

20.
Summary. Recently, Benzi and Szyld have published an important paper [1] concerning the existence and uniqueness of splittings for singular matrices. However, the assertion in Theorem 3.9 on the inheriting property of P-regular splitting for singular symmetric positive semidefinite matrices seems to be incorrect. As a complement of paper [1], in this short note we point out that if a matrix T is resulted from a P-regular splitting of a symmetric positive semidefinite matrix A, then splittings induced by T are not all P-regular. Received January 7, 1999 / Published online December 19, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号