首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2,5-Dihydroxybenzoic acid (DHB) has been demonstrated to be a more suitable matrix than 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA) to obtain reliable molecular mass values of intact glycoproteins because it prevents sugar fragmentation. Lack of spot homogeneity during the crystallization step was prevented by drying the sample-matrix mixture under vacuum conditions. Nevertheless, this sample-matrix preparation procedure requires a specific experimental setup and may be time-consuming. In this work, we investigated the effectiveness of different ionic liquid matrices (ILMs) with SA and DHB on the ionization of a set of intact glycoproteins with several degrees of glycosylation. The obtained results demonstrate that some of the tested ILMs allow detection of the studied intact glycoproteins. Furthermore, the selected optimum conditions solve the reproducibility issue of using the DHB as a solid matrix without the vacuum drying method and, surprisingly, avoid sugar fragmentation when both SA and DHB were used as ILMs.  相似文献   

2.
Both the techniques mentioned provide molecular weight and structural information, but laser microprobe mass spectrometry (LMMS) also provides greater control over the degree of fragmentation and enhanced sensitivity. In addition, LMMS allows microprobe analysis (i.e., spatial resolution of a few μm2) as well as providing quantitative measurements. The less energetic nature of fast-atom-bombardment mass spectrometry (FAB-MS) makes it more suitable for the analysis of highly labile polar compounds and high-mass biopolymers.  相似文献   

3.
Rapid identification of glycosylation sites of glycoproteins is urgently needed in glycoproteomics study. In the present work, a rapid and simple method based on non-specific digestion of gel-separated glycoproteins and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry was described, which can efficiently identify the N-linked glycosylation sites. One-step in-gel digestion of Ribonuclease B (RNase B) by proteinase K was employed to generate glycopeptides with short and discrepant peptide composition. When compared with glycopeptides prepared by two-step in gel-digestion using trypsin-proteinase K or trypsin-pronase, the direct proteinase K treatment showed obvious superiority in both glycopeptide recovery and preparation simplicity. Most importantly, it helps to generate greater variety of glycopeptide series with rich information for glycosylation site identification. In addition, binary matrices 5-chloro-2-mercaptobenzothiazole (CMBT) /2,5-dihydroxybenzoic acid (DHB) were found to form homogeneous microcrystal on the target with the purified glycopeptides, leading to improved detection sensitivity. Thus, the present work provides an optimized solution to speed up the characterization of N-linked glycosylation sites in glycoproteins.  相似文献   

4.
2,5‐Dihydroxybenzoic acid (DHB) is one of the most widely used and studied matrix compounds in matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. However, the influence of ageing of the DHB solution on the MALDI mass spectra has not been yet systematically studied. In this work, the possible changes occurring in the acidified acetonitrile/water solution of the MALDI matrix compound DHB during 1‐year usage period have been monitored with MALDI‐Fourier transform ion cyclotron resonance mass spectrometer (MALDI‐FT‐ICR‐MS) and attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) spectroscopy. No significant ageing products have been detected. The ability of the aged DHB solution to act as a MALDI matrix was tested with two materials widely used in art and conservation – bone glue (a proteinaceous material) and shellac resin (a resinous material) – and good results were obtained. A number of peaks in the mass spectra measured from the DHB solution were identified, which can be used for internal calibration of the mass axis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The mass spectra of peptides obtained with different matrices were compared using a matrix-assisted laser desorption/ionization (MALDI) ion source and a multi-turn time-of-flight (TOF) mass spectrometer, MULTUM-IMG, which has been developed at Osaka University. Two types of solid matrices, alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), and a liquid matrix made from a mixture of 3-aminoquinoline and CHCA were used. When measuring the peak signal intensity of human angiotensin II [M+H]+ from a fixed sample position, the liquid matrix produced a stable signal over 1000 laser shots, while the signal obtained with CHCA and DHB decayed after about 300 and 100 shots, respectively. Significant differences in the mass resolving power were not observed between the spectra obtained with the three matrices. Signal peak areas were measured as a function of the cycle number in a multi-turn ion trajectory, i.e., the total flight time over a millisecond time scale. For both [M+H]+ of human angiotensin II and bovine insulin, the decay of the signal peak area was the most significant with CHCA, while that measured with DHB was the smallest. The results of the mean initial ion velocity measurements suggested that the extent of metastable decomposition of the analyte ions increased in order of DHB, the liquid matrix, and CHCA, which is consistent with the difference in the decay of the signal peak area as the total flight time increased.  相似文献   

6.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for qualitative and quantitative end-group analysis of a small molecular weight polyester, poly(2-butyl-2-ethyl-1,3-propylene phthalate). The presence of carboxyl-terminated linear and cyclic polyester oligomers was confirmed with the help of simple sample preparation methods. The presence of carboxyl end-groups in the polyester chains was verified through their formation of carboxylate salts with alkali metal cations. Cyclic oligomers were identified through deuterium exchange of the exchangeable protons of the polyester. Various inorganic salts were tested for salt formation of the carboxyl end-groups, but only the alkali metal salts proved effective. The influence of the alkali metal salts on the results of the quantitative end-group analysis was also studied. The relative amounts of differently terminated and cyclic oligomers were calculated when the alkali metal salts were used with different matrices. The results showed that both the salts and the matrices used in sample preparation can have a marked effect on the quantitative results of the end-group analysis. The measurements were carried out using 2,5-dihydroxybenzoic acid (DHB), 1,8, 9-trihydroxyanthracene (dithranol), and 2-(4-hydroxyphenylazo)benzoic acid (HABA) as matrix compounds. Dithranol and HABA repeatably exhibited similar results, and these results differed from those obtained with DHB probably because of the different ionization mechanisms in the MALDI process. Copyright-Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Peptide mass fingerprinting (PMF) is a powerful technique in which experimentally measured m/z values of peptides resulting from a protein digest form the basis for a characteristic fingerprint of the intact protein. Due to its propensity to generate singly charged ions, along with its relative insensitivity to salts and buffers, matrix-assisted laser desorption and ionization (MALDI)-time-of-flight mass spectrometry (TOFMS) is the MS method of choice for PMF. The qualitative features of the mass spectrum can be selectively tuned by employing different methods to prepare the protein digest and matrix for MALDI-TOFMS. The selective tuning of MALDI mass spectra in order to optimize PMF is addressed here. Bovine serum albumin, carbonic anhydrase, cytochrome c, hemoglobin alpha- and beta-chain, and myoglobin were digested with trypsin and then analyzed by MALDI-TOFMS. 2,5-dihydroxybenzoic acid (DHB) and alpha-cyano-4-hydroxycinnamic acid (CHCA) were prepared using six different sample preparation methods: dried droplet, application of protein digest on MALDI plate followed by addition of matrix, dried droplet with vacuum drying, overlayer, sandwich, and dried droplet with heating. Improved results were obtained for the matrix alpha-cyano-4-hydroxycinnamic acid using a modification of the died droplet method in which the MALDI plate was heated to 80 °C prior to matrix application, which is supported by observations from scanning electron microscopy. Although each protein was found to have a different optimum sample preparation method for PMF, in general higher sequence coverage for PMF was obtained using DHB. The best PMF results were obtained when all of the mass spectral data for a particular protein digest was convolved together.  相似文献   

8.
We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds.  相似文献   

9.
Metal-bipyridine complexes are a vehicle for developing approaches for studying the fluorescence of gas-phase ions; however, conclusions regarding fluorescence behavior depend on explicitly identifying the ionic species in the gas phase. [Ru(bpy)(3)]X(2) and [Os(bpy(3))]X(2), (where bpy = 2,2'-bipyridine and X = Cl or PF(6)), were studied using direct laser desorption (LD) and matrix-assisted laser desorption/ionization (MALDI) using Fourier transform mass spectrometry (FTMS). LD spectra of the PF(6) salt of the Ru and Os complexes reveal counterion attachment, fluoride transfer, and significant losses of H for a number of peaks. LD of the chloride salt complexes produced loss of a single bpy ligand, chloride attachment, and losses of H. Spectra of [Ru(bpy(3)]X(2) where X = BF(4)(-), CF(3)SO(3)(-), and SCN(-) were also collected using LD and compared with the spectra for Cl(2) and PF(6) salts. Regardless of counterion, loss of H is observed in LD spectra. MALDI spectra of the trisbipyridyl complexes using 2,5-dihydroxybenzoic acid (DHB) and sinapinic acid (SA) as the matrix were also obtained. The spectra using SA as matrix show intact molecular ion peaks with very little fragmentation and no counterion attachment. Unlike SA, the spectra obtained using DHB look similar to LD spectra with significant losses of H. Our results are consistent with a reaction scheme for hydrogen loss from a carbon that also involves breaking of the metalz.sbnd;nitrogen bond, rotation of a pyridine ring, and re-formation of an ortho-metallated complex by a metalz.sbnd;C bond. These results demonstrate the importance of ion generation method and the utilization of FTMS for correct characterization of metal poly(pyridyl) complexes.  相似文献   

10.
Organic secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry can be used to produce molecular images of samples. This is achieved through ionization from a clearly identified point on a flat sample, and performing a raster of the sample by moving the point of ionization over the sample surface. The unique analytical capabilities of mass spectrometry for mapping a variety of biological samples at the tissue level are discussed. SIMS provides information on the spatial distribution of the elements and low molecular mass compounds as well as molecular structures on these compounds, while MALDI yields spatial information about higher molecular mass compounds, including their distributions in tissues at very low levels, as well as information on the molecular structures of these compounds. Application of these methods to analytical problems requires appropriate instrumentation, sample preparation methodology, and a data presentation usually in a three-coordinate plot where x and y are physical dimensions of the sample and z is the signal amplitude. The use of imaging mass spectrometry is illustrated with several biological systems.  相似文献   

11.
Wenjing Wang  Hui Liu  Zhili Li 《中国化学》2011,29(11):2229-2235
Sialylation of glycoproteins is vital for the function or physicochemical properties of a protein. It becomes more and more important to develop approaches that can be used to efficiently isolate and identify sialylated glycopeptides or glycoproteins for monitoring changes in glycoproteome. In the present study, we analyze intact structures of the enriched sialylated glycopeptides of bovine fetuin by matrix‐assisted laser desorption/ionization‐tandem mass spectrometry (MALDI‐MS/MS), without any chemical derivation. The experimental data show that the optimal loading buffer for TiO2 as matrix is 80% acetonitrile/2% TFA (trifluoroacetic acid)/100 mg/mL DHB (2,5‐dihydroxybenzoic acid) which is also compatible with MALDI‐mass spectrometric analysis. This study indicates that the improved enrichment approach combined with MALDI‐MS/MS may be a powerful tool to analyze intact structures and components of the sialylated glycopeptides from complex peptide mixture.  相似文献   

12.
The use of collision-induced dissociation, postsource decay (CID-PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of small organic molecules is demonstrated. Three pesticides: paraquat, diquat, and difenzoquat were chosen for this study. The matrices 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA), and sinapinic acid (SA) were selected to investigate the effect of the matrix on the CID-PSD MALDI spectra of these molecules. Alpha-CHCA and DHB were found to be appropriate matrices for the pesticides studied. Spectra for a given pesticide obtained from different matrices were compared with each other, and the differences between them are discussed. A comparison of CID-PSD MALDI with fast-atom bombardment MS/MS spectra is presented; the agreement of pesticide fragmentation patterns between the two methods indicates that CID-PSD MALDI MS is a reliable and efficient technique for structural elucidation of small molecules.  相似文献   

13.
The behaviour of 2,5‐dihydroxybenzoic acid (2,5‐DHB) matrix under matrix‐assisted laser desorption/ionisation (MALDI) conditions was investigated, and the formation of 2,5‐DHB cluster ions, mainly dehydrated 2,5‐DHB ions, is reported. Interestingly, in the mass spectra of this compound, besides dimers and trimers, protonated tetramers, pentamers, hexamers and heptamers were also found with significant abundance. The MALDI behaviour of four flavonoids, quercetin, myricetin, luteolin and kaempferol, using 2,5‐DHB as matrix, was also investigated. The mass spectra of the flavonoids studied revealed a number of flavonoid–2,5‐DHB cluster ions (mainly with the dehydrated 2,5‐DHB). The number of clusters formed is dependent on the structure of the analyte. For luteolin and kaempferol, in particular, evidence was found for the formation of cluster ions involving retro Diels Alder fragments and intact flavonoids molecules, as well as the corresponding protonated retro Diels Alder fragments with dehydrated DHB molecules. All ion compositions were attributed taking into account high accuracy mass measurements and tandem mass spectrometry experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this study we report an improved protocol that combines simplified sample preparation and micro-scale separation for mass spectrometric analysis of neuropeptides from individual neuroendocrine organs of crab Cancer borealis. A simple, one-step extraction method with commonly used matrix-assisted laser desorption/ionization (MALDI) matrix, 2,5-dihydroxybenzoic acid (DHB), in saturated aqueous solution, is employed for improved extraction of neuropeptides. Furthermore, a novel use of DHB as background electrolyte for capillary electrophoresis (CE) separation in the off-line coupling of CE to MALDI-Fourier transform mass spectrometric (FT-MS) detection is also explored. The new CE electrolyte exhibits full compatibility with MALDI-MS analysis of neuropeptides in that both the peptide extraction process and MALDI detection utilize DHB. In addition, enhanced resolving power and improved sensitivity are also observed for CE-MALDI-MS of peptide mixture analysis. Collectively, the use of DHB has simplified the extraction and reduced the sample loss by elimination of homogenizing, drying, and desalting processes. In the mean time, the concurrent use of DHB as CE separation buffer and subsequent MALDI matrix offers improved spectral quality by eliminating the interferences from typical CE electrolyte in MALDI detection.  相似文献   

15.
A method for determining accurate relative molecular masses and elemental compositions of several non-volatile and thermally labile organic compounds in the source cell was established. The experimental sequence included laser desorption/electron impact Fourier transform mass spectrometry and direct-mode observation over a narrow mass range. Perfluorotributylamine was used as internal calibrant. Errors were about 1 ppm.  相似文献   

16.
A large number of matrix substances have been used for various applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The majority of matrices applied in ultraviolet-MALDI MS are crystalline, low molecular weight compounds. A problem encountered with many of these matrices is the formation of hot spots, which lead to inhomogeneous samples, thus leading to increased measurement times and hampering the application of MALDI MS for quantitative purposes. Recently, ionic (liquid) matrices (ILM or IM) have been introduced as a potential alternative to the classical crystalline matrices. ILM are equimolar mixtures of conventional MALDI matrix compounds such as 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CCA) or sinapinic acid (SA) together with organic bases [e.g., pyridine (Py), tributylamine (TBA) or N,N-dimethylethylenediamine (DMED)]. The present article presents a first overview of this new class of matrices. Characteristic properties of ILM, their influence on mass spectrometric parameters such as sensitivity, resolution and adduct formation and their application in the fields of proteome analysis, the measurement of low molecular weight compounds, the use of MALDI MS for quantitative purposes and in MALDI imaging will be presented. Scopes and limitations for the application of ILM are discussed.  相似文献   

17.
We have carried out molecular dynamics simulations to study the desorption of a dephosphorylated fragment of protein kinase A from two matrices, sinapic acid (SA) and 2,5-dihydroxybenzoic acid (DHB), after laser excitation. We have examined the results as a function of the laser fluence and of the burial depth of the guest peptide in the matrices. In most cases, we found that the energy transferred from the matrix to the guest peptide was not sufficiently large to fragment the peptide. Exceptions occurred when the peptide was more buried. This finding suggested that protein analytes might be less likely to break into smaller fragments if they were placed closer to the surface of the matrix. We have also examined how likely the guest peptide could form small clusters with the matrix molecules and found that the results depended on the degree of burial of the peptide, on the laser fluence, and on which matrix was used. Generally, stable clusters were more likely to be formed for guest peptides that were more buried, at a lower laser fluence, and in the SA rather than the DHB matrix. In addition, we found that the DHB matrix was broken down more easily by the laser than the SA matrix.  相似文献   

18.
Efficient structural characterization is important for quality control when developing novel materials. In this study, we demonstrated the soft ionization capability of the hybrid of immobilized silica and 2,5-dihydrobenzoic acid (DHB) on iron oxide magnetic nanoparticles in MALDI-TOF MS with a clean background. The ratio between SiO2 and DHB was examined and was found to affect the surface immobilization of DHB on the nanoparticle, critically controlling the ionization efficiency and interference background. Compared with commercial DHB, the functionalized nanoparticle-assisted MALDI-TOF MS provided superior soft ionization with production of strong molecular ions within 5 ppm mass accuracy on a variety of new types of synthetic materials used for solar cells, light emitting devices, dendrimers, and glycolipids, including analytes with either thermally labile structures or poor protonation tendencies. In addition, the enhancements of the molecular ion signal also provided high-quality product-ion spectra allowing structural characterization and unambiguous small molecule identification. Using this technique, the structural differences among the isomers were distinguished through their characteristic fragment ions and comprehensive fragmentation patterns. With the advantages of long-term stability and simple sample preparation by deposition on a regular sample plate, the use of DHB-functionalized nanoparticles combined with high-resolution MALDI-TOF MS provides a generic platform for rapid and unambiguous structure determination of small molecules.  相似文献   

19.
We evaluated several aqueous-based sample preparation protocols for the analysis of poly(methacrylic acid) (PMAA) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The sample contained a pentaerythritol tetra(3-mercaptopropionate) end-group, and was characterized in positive and negative ion modes using 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP) matrices. The major series observed were the [M + Na](+) species, in positive ion mode, and the [M - H](-) species, in negative ion mode. The performance of DHB and THAP matrices was comparable in positive ion mode, but THAP outperformed DHB in negative ion mode. The use of ion-exchange beads (IXB) benefited the analysis, while the addition of sodium acetate (NaOAc) or trifluoroacetic acid (TFA) proved disadvantageous in positive ion mode.  相似文献   

20.
D-Glucose and 19 glucose derivatives were investigated by positive and negative ion matrix assisted laser desorption/ionization time-of-flight mass spectrometry using 2,5-dihydroxybenzoic acid (DHB) as the matrix. The set of substrates includes oligomers of amylose and cellulose, native alpha-, beta-, and gamma-cyclodextrin, and chemically modified beta- and gamma-cyclodextrins. These analytes were chosen to modulate molecular weight, polarity, and capability of establishing noncovalent interactions with guest molecules. In the negative-ion mode, the DHB matrix gave rise to charged multicomponent adducts of type [M + DHB - H]- (M = oligosaccharide) selectively for those analytes matching the following conditions: (i) underivatized chemical structure and (ii) number of glucose units > or = 4. In the positive-ion polarity, only some amylose and cellulose derivatives and methylated beta-cyclodextrins provided small amount of cationized adducts with the matrix of type [M + DHB + X]+ (X = Na or K), along with ubiquitous [M + X]+ ions. The results are discussed by taking into account analyte-matrix association phenomena, such as hydrogen bond and inclusion phenomena, as a function of the molecular structure of the analyte. The conclusions derived by mass spectrometric data are compared with the X-ray diffraction data obtained on a single crystal of the 1:1 alpha-cyclodextrin - DHB noncovalent adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号