首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang JY  Wang XY  Xiao M  Ye YH 《Optics letters》2003,28(16):1430-1432
The angular dependence of the spontaneous emission of CdTe quantum dots (QDs) inside a photonic crystal with a pseudogap is reported. The sensitive dependences of the radiative lifetime and the photoluminescence spectrum of CdTe QDs on the observation angle demonstrate the effect of the photonic bandgap on the spontaneous emission of the QDs.  相似文献   

2.
论证了在赝带隙光子晶体中存在一个全频率域态总数守恒规则,在完全带隙光子晶体中还存在一个局域态总数守恒规则.态总数守恒规则指出,如果一个光子晶体的态密度在某些频率范围存在相对于等效介质态密度的谷,则一定由其他频率范围内相对于等效介质态密度的峰来补偿.使用符合态总数守恒规则的态密度模型,解释了态密度调制导致的自发辐射谱增强、抑制、变窄、红移、蓝移以及谱分裂等光子晶体中的量子光学现象.该理论比较适合研究在具有赝带隙的光子晶体中大量随机分布的发光原子或分子的自发辐射行为. 关键词: 光子晶体 自发辐射 态密度 光子赝带隙  相似文献   

3.
We have investigated the analytical forms of the photonic density of states (DOS) in a photonic crystal in the interested frequency regime according to the rule of state conservation in a photonic crystal with pseudogaps, which states that, if a valley of the DOS appears in some range of frequencies, it must be compensated for by increasing over some other ranges. By using a model DOS with a state-conservative photonic pseudogap, we have also investigated the enhancement and suppression of spontaneous emission of two-level atoms with different frequency positions and widths of emission spectra in a state-conservative electromagnetic reservoir; and the DOS-induced suppression, enhancement, narrowing and redshifting or blueshifting of spontaneous emission spectra are naturally obtained.  相似文献   

4.
曹天德 《中国物理 B》2010,19(11):117402-117402
This paper deduces that the particular electronic structure of cuprate superconductors confines Cooper pairs to be first formed in the antinodal region which is far from the Fermi surface,and these pairs are incoherent and result in the pseudogap state.With the change of doping or temperature,some pairs are formed in the nodal region which locates the Fermi surface,and these pairs are coherent and lead to superconductivity.Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface.It also shows that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure,and non-s wave symmetry gap favours the high-temperature superconductivity.Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.  相似文献   

5.
碳纳米锥电子场发射的第一性原理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王六定  陈国栋  张教强  杨敏  王益军  安博 《物理学报》2009,58(11):7852-7856
运用第一性原理研究了不同锥角和结构的碳纳米锥 (CNC) 电子场发射性能.结果表明:随外电场 (Eadd) 增强,CNC电子结构变化显著,费米能级 (Ef) 处态密度 (DOS) 明显增大;赝能隙减小;体系电荷移向尖端.DOS,HOMO/LUMO及Mulliken电荷分析表明:CNC的电子场发射性能除依赖于尖端结构外,很大程度上还取决于锥角大小,特别顶层6个原子的CNC3和CNC4场发射性能 关键词: 碳纳米锥 电子场发射 第一性原理  相似文献   

6.
We determine the magnetic-field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic lattice model with d-wave superconductivity account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors.  相似文献   

7.
Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T(c), and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T(c).  相似文献   

8.
Calculations of the optical conductivity are performed in a simple model of the electronic spectrum of a two-dimensional system with “hot regions” on the Fermi surface. The model leads to a strong restructuring of the spectral density (pseudogap) in these regions. It is shown that this model makes it possible to reproduce qualitatively the basic features of the optical measurements in the pseudogap state of high-temperature superconducting cuprates. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 6, 447–452 (25 March 1999)  相似文献   

9.
A 2D model of the pseudogap state is considered on the basis of the scenario of strong electron scattering by short-range-order fluctuations of the “dielectric” (antiferromagnetic or charge density wave) type. A system of recurrence relations is constructed for a one-particle Green’s function and the vertex part, describing the interaction of electrons with an external field. This system takes into account all Feynman diagrams for electron scattering at short-range-order fluctuations. The results of detailed calculations of optical conductivity are given for various geometries (topologies) of the Fermi surface, demonstrating both the effects of pseudogap formation in the electron spectrum and the localization effects. The obtained results are in qualitative agreement with experimental data for underdoped HTSC cuprates.  相似文献   

10.
We report the observation of suppression of the green photoluminescence from an optically active ZnO-infiltrated composite opal fabricated by electrodeposition templated on a self-assembled polystyrene opal. This is interpreted to be the consequence of an effective photonic pseudogap formed by the composite opaline photonic crystal. The effective pseudogap’s effect on emission of the composite opal, one ‘raw’ and one ‘inverted’, is simply the addition of the effect of each component opal, with no noticeable interaction effect, thus suggesting a simple route for engineering the photonic behavior of heterogeneous photonic crystals. PACS 42.70.Qs; 78.55.-m; 78.66.Hf  相似文献   

11.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determined only by amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field temperature T0 has a similar doping dependence as the pseudogap temperature T(*), whereas the pseudogap energy scale is given by the average amplitude above T(c).  相似文献   

12.
Interlayer tunneling resistivity is used to probe the low-energy density-of-states (DOS) depletion due to the pseudogap in the normal state of Bi2Sr2CaCu2O8+y. Measurements up to 60 T reveal that a field that restores DOS to its ungapped state shows strikingly different temperature and doping dependencies from the characteristic fields of the superconducting state. The pseudogap closing field and the pseudogap temperature T small star, filled evaluated independently are related through a simple Zeeman energy scaling. These findings indicate a predominant role of spins over the orbital effects in the formation of the pseudogap.  相似文献   

13.
Tunneling characteristics of a two-dimensional lateral tunnel junction are reported. A pseudogap on the order of Coulomb energy is detected in the tunneling density of states (TDOS) when two identical two-dimensional electron systems are laterally separated by a thin energy barrier. The Coulombic pseudogap remains robust well into the quantum Hall regime until it is overshadowed by the cyclotron gap in the TDOS. The pseudogap is modified by the in-plane magnetic field, demonstrating a nontrivial effect of the in-plane magnetic field on the electron-electron interaction.  相似文献   

14.
Optical investigations are presented of the filled skutterudites AFe4Sb12 with divalent cations A=Yb, Ca, Ba. For each of these compounds a very similar pseudogap structure in the optical conductivity develops in the far-infrared spectral region at temperatures below 90 K. Highly accurate local-density approximation electronic band structure calculations can consistently explain the origin of the pseudogap structure generated largely by transition metal 3d states. In particular, a 4f-conduction electron hybridization or strong correlations can be ruled out as origin for the pseudogap.  相似文献   

15.
The real part of the in-plane optical self-energy data in underdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} (Bi-2212) and ortho II YBa2Cu3O6.5 contains new and important information on the pseudogap. Using a theoretical model approach, a major new finding is that states lost below the pseudogap Delta_{pg} are accompanied by a pileup of states just above this energy. The pileup along with a sharp mode in the bosonic spectral function leads to an unusually rapid increase in the optical scattering rate as a function of frequency and a characteristically sloped peak in the real part of the optical self-energy. These features are not found in optimally doped and overdoped samples and represent the clearest signature so far in the in-plane optical conductivity of the opening of a pseudogap.  相似文献   

16.
王竞  EnricoArrigoni 《中国物理 B》2009,18(6):2475-2480
The one-electron spectral function of a frustrated Hubbard chain is computed by making use of the cluster perturbation theory. The spectral weight we found turns out to be strongly dependent on the frustrating next-nearest-neighbor hopping t'. A frustration induced pseudogap arises when the system evolves from a gapful Mott insulator to a gapless conductor for an intermediate value of the frustration parameter |t'|. Furthermore, the opening of a pseudogap in the density of states already in the metallic side leads to a continuous opening of the true gap in the insulator. For the hole-doped case, the pseudogap is pinned at the Fermi energy, while the Mott gap is shifted in energy with increasing Hubbard interaction U. The separation of the pseudogap and Mott gap in the hole-doped system demonstrates the validity of the existence of a pseudogap.  相似文献   

17.
The influence of pseudogap on the inelastic neutron scattering spectra of the underdoped lanthanum cuprate is studied on the basis of the model which incorporates both the superconducting state and pseudogap state.It is found that the striking effects of the influence of the pseudogap on the incommensurability of the spin excitation spectrum are that in the superconducting state the pseudogap makes the intensity of the incommensurate peak increase,in the normal state the pseudogap not only makes the intensity of the incommensurate peak increase,but also sharpens the incommensurate peak and increases incommensurability.  相似文献   

18.
It was proposed that the id(x(2)-y(2)) density-wave state (DDW) may be responsible for the pseudogap behavior in the underdoped cuprates. Here we show that the admixture of a small d(xy) component to the DDW state breaks the symmetry between the counterpropagating orbital currents of the DDW state and, thus, violates the macroscopic time-reversal symmetry. This symmetry breaking results in a nonzero polar Kerr effect, which has recently been observed in the pseudogap phase.  相似文献   

19.
Hongtao Yan 《中国物理 B》2022,31(8):87401-087401
The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi2Sr1.6La0.4CuO6+δ superconductor, we report the observations of the particle-hole symmetry conservation in both the superconducting state and the pseudogap state along the entire Fermi surface. These results provide key insights in understanding the nature of the pseudogap and its relation with high temperature superconductivity.  相似文献   

20.
We show that the strong-coupling physics inherent to the insulating Mott state in 2D leads to a jump in the chemical potential upon doping and the emergence of a pseudogap in the single-particle spectrum below a characteristic temperature. The pseudogap arises because any singly occupied site not immediately neighboring a hole experiences a maximum energy barrier for transport equal to t(2)/U, t the nearest-neighbor hopping integral and U the on-site repulsion. The resultant pseudogap cannot vanish before each lattice site, on average, has at least one hole as a near neighbor. The ubiquity of this effect in all doped Mott insulators suggests that the pseudogap in the cuprates has a simple origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号