首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The velocity fields corresponding to some flows of second grade and Maxwell fluids, induced by a circular cylinder subject to a constantly accelerating translation along its symmetry axis, are presented as Fourier-Bessel series in terms of the eigenfunctions of some suitable boundary value problems. These solutions satisfy both the associate partial differential equations and all imposed initial and boundary conditions. For α or λ → 0, they are going to those for a Newtonian fluid. Finally, for comparison, some diagrams corresponding to the solutions for the flow through a circular cylinder are presented for different values of t and of the material constants. Received: March 18, 2004; revised: October 28, 2004  相似文献   

2.
The unsteady helical flow of an Oldroyd-B fluid, in an infinite circular cylinder, is studied by using finite Hankel transforms. The motion is produced by the cylinder that, at time t = 0+, is subject to torsional and longitudinal time-dependent shear stresses. The solutions that have been obtained, presented under series form, satisfy all imposed initial and boundary conditions. The corresponding solutions for Maxwell, second grade and Newtonian fluids are obtained as limiting cases of general solutions. Finally, the influence of the pertinent parameters on the fluid motion is underlined by graphical illustrations.  相似文献   

3.
Considering a fractional derivative model the unsteady flow of an Oldroyd-B fluid between two infinite coaxial circular cylinders is studied by using finite Hankel and Laplace transforms. The motion is produced by the inner cylinder which is subject to a time dependent longitudinal shear stress at time t = 0+. The solution obtained under series form in terms of generalized G and R functions, satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Oldroyd-B, generalized and ordinary Maxwell, and Newtonian fluids are obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion as well as a comparison between models is illustrated graphically.  相似文献   

4.
We consider boundary value problems for the differential equations Δ2 u + B u = 0 with operator coefficients B corresponding to initial-boundary value problems for the diffusion equation Δ3 upu = t u (p > 0) on a right cylinder with inhomogeneous boundary conditions on the lateral surface of the cylinder with zero boundary conditions on the bases of the cylinder and with zero initial condition. For their solution, we derive specific boundary integral equations in which the space integration is performed only over the lateral surface of the cylinder and the kernels are expressed via the fundamental solution of the two-dimensional heat equation and the Green function of corresponding one-dimensional initial-boundary value problems of diffusion. We prove uniqueness theorems and obtain sufficient existence conditions for such solutions in the class of functions with continuous L 2-norm.  相似文献   

5.
Unsteady flow of an incompressible generalized Maxwell fluid between two coaxial circular cylinders is studied by means of the Laplace and finite Hankel transforms. The motion of the fluid is produced by the rotation of cylinders around their common axis. The solutions that have been obtained, written in integral and series form in terms of the generalized Ga,b,c(·, t)-functions, are presented as a sum of the Newtonian solutions and the corresponding non-Newtonian contributions. They satisfy all imposed initial and boundary conditions and for λ  0 reduce to the solutions corresponding to the Newtonian fluids performing the same solution. Furthermore, the corresponding solutions for ordinary Maxwell fluids are also obtained for β = 1. Finally, in order to reveal some relevant physical aspects of the obtained results, the diagrams of the velocity field ω(r, t) have been depicted against r and t for different values of the material and fractional parameters.  相似文献   

6.
《Quaestiones Mathematicae》2013,36(4):429-441
Abstract

The velocity field and the adequate shear stress corresponding to the unsteady flow of a generalized Oldroyd-B fluid in an infinite circular cylinder are determined by means of Hankel and Laplace transforms. The solutions that have been obtained, written in terms of the generalized G-functions, satisfy all imposed initial and boundary conditions. The similar solutions for generalized Maxwell fluids as well as those for ordinary fluids are obtained as limiting cases of our general solutions.  相似文献   

7.
Steady two-dimensional creeping flows induced by line singularities in the presence of an infinitely long circular cylinder with stick-slip boundary conditions are examined. The singularities considered here include a rotlet, a potential source and a stokeslet located outside a cylinder and lying in a plane containing the cylinder axis. The general exterior boundary value problem is formulated and solved in terms of a stream function by making use of the Fourier expansion method. The solutions for various singularity driven flows in the presence of a cylinder are derived from the general results. The stream function representation of the solutions involves a definite integral whose evaluation depends on a non-dimensional slip parameter l1\lambda_1. For extremal values, l1 = 0\lambda_1 = 0 and l1 = 1\lambda_1 = 1, of the slip parameter our results reduce to solutions of boundary value problems with stick (no-slip) and perfect slip conditions, respectively.¶The slip parameter influences the flow patterns significantly. The plots of streamlines in each case show interesting flow patterns. In particular, in the case of a single rotlet/stokeslet (with axis along y-direction) flows, eddies are observed for various values of l1\lambda_1. The flow fields for a pair of singularities located on either side of the cylinder are also presented. In these flows, eddies of different sizes and shapes exist for various values of l1\lambda_1 and the singularity locations. Plots of the fluid velocity on the surface show locations of the stagnation points on the surface of the cylinder and their dependencies on l1\lambda_1 and singularity locations.  相似文献   

8.
In this work we study solutions of the prescribed mean curvature equation over a general domain that do not necessarily attain the given boundary data. With such a solution we can naturally associate a current with support in the closed cylinder above the domain and with boundary given by the prescribed boundary data and which inherits a natural minimizing property. Our main result is that its support is a C 1,α manifold-with-boundary, with boundary equal to the prescribed boundary data, provided that both the initial domain and the prescribed boundary data are of class C 1,α .  相似文献   

9.
The boundary value problem for the similar stream function f  =  f(η;λ) of the Cheng–Minkowycz free convection flow over a vertical plate with a power law temperature distribution Tw(x)  =  T + Axλ in a porous medium is revisited. It is shown that in the λ-range  − 1/2  < λ  <  0 , the well known exponentially decaying “first branch” solutions for the velocity and temperature fields are not some isolated solutions as one has believed until now, but limiting cases of families of algebraically decaying multiple solutions. For these multiple solutions well converging analytical series expressions are given. This result yields a bridging to the historical quarreling concerning the feasibility of exponentially and algebraically decaying boundary layers. Owing to a mathematical analogy, our results also hold for the similar boundary layer flows induced by continuous surfaces stretched in viscous fluids with power-law velocities uw(x)∼ xλ.  相似文献   

10.
The asymptotic behavior of solutions to boundary value problems for the Poisson equation is studied in a thick two-level junction of type 3:2:2 with alternating boundary conditions. The thick junction consists of a cylinder with ε-periodically stringed thin disks of variable thickness. The disks are divided into two classes depending on their geometric structure and boundary conditions. We consider problems with alternating Dirichlet and Neumann boundary conditions and also problems with different alternating Fourier (Neumann) conditions. We study the influence of the boundary conditions on the asymptotic behavior of solutions as ε → 0. Convergence theorems, in particular, convergence of energy integrals, are proved. Bibliography: 31 titles. Illustrations: 1 figure.  相似文献   

11.
We prove two conditions of local Holder continuity for suitable weak solutions to the Navier-Stokes equations near a smooth curved part of the boundary of the domain. One of these conditions has the form of the Caffarelli-Kohn-Nirenberg condition for local boundedness of suitable weak solutions at interior points of the space-time cylinder. The corresponding results near a planar part of the boundary have been established earlier by Seregin. Bibliography: 21 titles. To Nina Nikolaevna Uraltseva on the occasion of her 70th birthday __________ Published in Zapiski Nauchnykh Seminarov POMI, Vol. 310, 2004, pp. 158–190.  相似文献   

12.
The present investigation is concerned with a study effect of non-homogeneous on the elastic stresses in rotating orthotropic infinite circular cylinder subjected to certain boundary conditions. Closed form stress solutions are obtained for rotating orthotropic cylinder with constant thickness for three cases: (1) a solid cylinder; (2) cylinder mounted on a circular rigid shaft; and (3) cylinder with a circular hole at the center. Analytical expressions for the components of the displacement and the stress in different cases are obtained. The effect of the rotation and non-homogeneity on the displacement and stress are studied. Numerical results are given and illustrated graphically for each case is considered. The effects rotating and non-homogeneity are discussed. Comparisons are made with the results predicted in the presence and absence of rotation.  相似文献   

13.
A Galerkin boundary element method based on interpolatory Hermite trigonometric wavelets is presented for solving 2-D potential problems defined inside or outside of a circular boundary in this paper. In this approach, an equivalent variational form of the corresponding boundary integral equation for the potential problem is used; the trigonometric wavelets are employed as trial and test functions of the variational formulation. The analytical formulae of the matrix entries indicate that most of the matrix entries are naturally zero without any truncation technique and the system matrix is a block diagonal matrix. Each block consists of four circular submatrices. Hence the memory spaces and computational complexity of the system matrix are linear scale. This approach could be easily coupled into domain decomposition method based on variational formulation. Finally, the error estimates of the approximation solutions are given and some test examples are presented.  相似文献   

14.
This paper presents two contributions to the analysis of three-dimensional slow viscous flows in cylinders of circular section. First the vector axial eigenfunctions for this geometry, namely those that satisfy homogeneous boundary conditions on the flat end walls, are derived. Secondly a method is presented to find particular solutions to the inhomogeneous Stokes equations in this geometry. These new results, together with some results obtained earlier, are used to analyse slow natural convection in a vertical cylinder completely filled with a viscous liquid. The fluid motion is generated by the differential heating of the walls of the cylinder. The natural convection flow field is shown to be a superposition of an inhomogeneous field, the fields generated by the vector eigenfunctions and a Stokes flow field. A by-product of this work has been the identification of constraints on the boundary data that have to be satisfied in order for the eigenfunction expansions to work; this knowledge will be useful when attempts are made to prove the completeness of these Stokes flow eigenfunctions.Received: June 30, 2003; revised: February 26, 2004  相似文献   

15.
The unsteady flow of a generalized second-grade fluid through an infinite straight circular cylinder is considered. The flow of the fluid is due to the longitudinal time dependent shear stress that is prescribed on the boundary of the cylinder. The fractional calculus approach in the governing equation corresponding to a second-grade fluid is introduced. The velocity field and the resulting shear stress are obtained by means of the finite Hankel and Laplace transforms. In order to avoid lengthy calculations of residues and contour integrals, the discrete inverse Laplace transform method is used. The corresponding solutions for ordinary second-grade and Newtonian fluids, performing the same motion, are obtained as limiting cases of our general solutions. Finally, the influence of the material constants and of the fractional parameter on the velocity and shear stress variations is underlined by graphical illustrations.  相似文献   

16.
This paper presents two contributions to the analysis of three-dimensional slow viscous flows in cylinders of circular section. First the vector axial eigenfunctions for this geometry, namely those that satisfy homogeneous boundary conditions on the flat end walls, are derived. Secondly a method is presented to find particular solutions to the inhomogeneous Stokes equations in this geometry. These new results, together with some results obtained earlier, are used to analyse slow natural convection in a vertical cylinder completely filled with a viscous liquid. The fluid motion is generated by the differential heating of the walls of the cylinder. The natural convection flow field is shown to be a superposition of an inhomogeneous field, the fields generated by the vector eigenfunctions and a Stokes flow field. A by-product of this work has been the identification of constraints on the boundary data that have to be satisfied in order for the eigenfunction expansions to work; this knowledge will be useful when attempts are made to prove the completeness of these Stokes flow eigenfunctions.  相似文献   

17.
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a generalized Maxwell fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and after some time both cylinders suddenly begin to oscillate around their common axis with different angular frequencies of their velocities. The solutions that have been obtained are presented under integral and series forms in terms of generalized G and R functions. Moreover, these solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary Maxwell fluid are also obtained as limiting cases of our general solutions. At the end, flows corresponding to the ordinary Maxwell and generalized Maxwell fluids are shown and compared graphically by plotting velocity profiles at different values of time and some important results are remarked.  相似文献   

18.
The helical flows of second grade fluid between two infinite coaxial circular cylinders is considered. The motion is produced by the inner cylinder that at the initial moment applies torsional and longitudinal constantly accelerated shear stresses to the fluid. The exact analytic solutions, obtained by employing the Laplace and finite Hankel transforms and presented in series form in term of usual Bessel functions of first and second kind, satisfy both the governing equations and all imposed initial and boundary conditions. In the limiting case when α  0, the solutions for Newtonian fluid are obtained for the same motion. The large-time solutions and transient solutions for second grade fluid are also obtained, and effect of material parameter α and kinematic viscosity ν is discussed. In the last, the effects of various parameters of interest on fluid motion as well as the comparison between second grade and Newtonian fluids are analyzed by graphical illustrations.  相似文献   

19.
We present the boundary value problem (BVP) for the heave motion due to a vertical circular cylinder in water of finite depth. The BVP is presented in terms of velocity potential function. The velocity potential is obtained by considering two regions, namely, interior region and exterior region. The solutions for these two regions are obtained by the method of separation of variables. The analytical expressions for the hydrodynamic coefficients are derived. Computational results are presented for various depth to radius and draft to radius ratios.  相似文献   

20.
In the paper the method of homogeneous solutions is used to reduce the torsion and tension Saint-Venant problems for a circular cylinder with rhombohedral cylindrical anisotropy to construction of solutions of two boundary value problems for a system of ordinary differential equations. By integrating it is found that if the twisting moment is nonzero, then a longitudinal strain, which is proportional to the twisting moment, is brought about in the cylinder, provided that the boundary conditions on at least one of the ends of the cylinder do not impede longitudinal displacements. Otherwise, an axial force arise in the cylinder under torsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号