首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of the muramyldipeptide derivative B30-MDP to liposomal vaccines will aid in the development of improved high immunogenicity vaccines. To give full play to the effectiveness of B30-MDP as a liposomal vaccine, it is important to evaluate the effect of cholesterol, dimyristoylphosphatidylcholine (DMPC) or distearoylphosphatidylcholine (DSPC) incorporation on the chemical stability of B30-MDP and physicochemical properties of B30-MDP/lipid mixed vesicles from the view point of pharmaceutics.The observed degradation rate constants of B30-MDP by hydrolysis in B30-MDP/cholesterol mixed vesicles were increased with increasing concentration of cholesterol, however, those in B30-MDP/DMPC and B30-MDP/DSPC mixed vesicles were unchanged with increasing concentration of DMPC and DSPC. The degradation behavior of B30-MDP was then compared with physicochemical properties of B30-MDP/lipid mixed vesicles, such as membrane fluidity and particle size. It was apparent that the degradation of B30-MDP in B30-MDP/cholesterol mixed vesicles was influenced by the particle size, but not by the fluidity of the membranes. In the case of B30-MDP/phospholipid mixed vesicles, MDP/phospholipid mixed vesicles, the degradation of B30-MDP was not influenced by either the membranes' fluidity or the particle size of the mixed vesicles.It is considered that the degradation of B30-MDP in the mixed vesicles is dependent on the membrane state, and the addition of cholesterol to B30-MDP vesicle inhibits the mutual interaction of MDP regions, whereas the addition of phospholipids hardly influences the mutual interaction of MDP regions, possibly owing to phase separation between B30-MDP and phospholipids.  相似文献   

2.
Neumann E  Kakorin S  Toensing K 《Faraday discussions》1998,(111):111-25; discussion 137-57
Analysis of the reduced turbidity (delta T-/T0) and absorbance (delta A-/A0) relaxations of unilamellar lipid vesicles, doped with the diphenylhexatrienyl-phosphatidylcholine (beta-DPH pPC) lipids in high-voltage rectangular electrical field pulses, demonstrates that the major part of the turbidity and absorbance dichroism is caused by vesicle elongation under electric Maxwell stress. The kinetics of this electrochemomechanical shape deformation (time constants 0.1 < or = tau/microsecond < or = 3) is determined both by the entrance of water and ions into the bulk membrane phase to form local electropores, and by the faster processes of membrane stretching and smoothing of thermal undulations. Moreover, the absorbance dichroism indicates local displacements of the chromophore relative to the membrane normal in the field. The slightly slower relaxations of the chemical turbidity (delta T+/T0) and absorbance (delta A+/A0) modes are both associated with the entrance of solvent into the interface membrane/medium, caused by the alignment of the bipolar lipid head groups in one of the leaflets at the pole caps of the vesicle bilayer. In addition, (delta T+/T0) indicates changes in vesicle shape and volume. The results for lipid vesicles provide guidelines for the analysis of electroporative deformations of biological cells.  相似文献   

3.
Penetratin (RQIKIWFQNRRMKWKK) enters cells by different mechanisms, including membrane translocation, thus implying that the peptide interacts with the lipid bilayer. Penetratin also crosses the membrane of artificial vesicles, depending on their phospholipid content. To evaluate the phospholipid preference of penetratin, as the first step of translocation, we exploited the benzophenone triplet kinetics of hydrogen abstraction, which is slower for secondary than for allylic hydrogen atoms. By using multilamellar vesicles of varying phospholipid content, we identified and characterized the cross-linked products by MALDI-TOF mass spectrometry. Penetratin showed a preference for negatively charged (vs. zwitterionic) polar heads, and for unsaturated (vs. saturated) and short (vs. long) saturated phospholipids. Our study highlights the potential of using benzophenone to probe the environment and insertion depth of membranotropic peptides in membranes.  相似文献   

4.
Penetratin (RQIKIWFQNRRMKWKK) enters cells by different mechanisms, including membrane translocation, thus implying that the peptide interacts with the lipid bilayer. Penetratin also crosses the membrane of artificial vesicles, depending on their phospholipid content. To evaluate the phospholipid preference of penetratin, as the first step of translocation, we exploited the benzophenone triplet kinetics of hydrogen abstraction, which is slower for secondary than for allylic hydrogen atoms. By using multilamellar vesicles of varying phospholipid content, we identified and characterized the cross‐linked products by MALDI‐TOF mass spectrometry. Penetratin showed a preference for negatively charged (vs. zwitterionic) polar heads, and for unsaturated (vs. saturated) and short (vs. long) saturated phospholipids. Our study highlights the potential of using benzophenone to probe the environment and insertion depth of membranotropic peptides in membranes.  相似文献   

5.
It is believed that natural biological membranes contain domains of lipid ordered phase enriched in cholesterol and sphingomyelin. Although the existence of these domains, called lipid rafts, is still not firmly established for natural membranes, direct microscopic observations and phase diagrams obtained from the study of three-component mixtures containing saturated phospholipids, unsaturated phospholipids, and cholesterol demonstrate the existence of lipid rafts in synthetic membranes. The presence of the domains or rafts in these membranes is often ascribed to the preferential interactions between cholesterol and saturated phospholipids, for example, between cholesterol and sphingomyelin. In this work, we calculate, using molecular dynamics computer simulation technique, the free energy of cholesterol transfer from the bilayer containing unsaturated phosphatidylcholine lipid molecules to the bilayer containing sphingomyelin molecules and find that the affinity of cholesterol to sphingomyelin is higher. Our calculations of the free-energy components, energy and entropy, show that cholesterol transfer is exothermic and promoted by the favorable change in the lipid-lipid interactions near cholesterol and not by the favorable energy of cholesterol-sphingomyelin interaction, as assumed previously.  相似文献   

6.
The interaction of bile salts with model membranes composed of soybean phosphatidylcholine (SPC) and synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated using high sensitivity isothermal titration calorimetry (ITC). The partitioning and incorporation of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) from an aqueous phase (pure water or 0.1 M NaCl) into fluid bilayer vesicles was studied as a function of temperature and ionic strength. The thermodynamic parameters of partitioning were determined with a model taking electrostatic interactions into account. In addition, the solubilization of SPC and POPC vesicles with NaC and NaDC as a function of temperature was also studied by ITC and the phase diagrams for the vesicle to micelle transition at two different temperatures were established. Unsaturated phospholipids require higher amounts of detergent to be transformed into micelles compared to saturated phospholipids. In addition, the width of the coexistence region of mixed micelles and mixed vesicles is larger for phosphatidylcholines with unsaturated chains. A comparison of NaDC with NaC shows the higher solubilization effectiveness of NaDC in agreement with its lower cmc. Furthermore, increasing the ionic strength decreases the amount of bile salt necessary for the formation of mixed micelles, which is also expected from the decrease of the cmc with ionic strength due to the shielding of the charges of the bile salts.  相似文献   

7.
We have investigated the relationship between rhodopsin photochemical function and the retinal rod outer segment (ROS) disk membrane lipid composition using flash photolysis techniques. Bovine rhodopsin was combined with various phospholipids to form recombinant membrane vesicles, in which the lipid acyl chain composition was maintained at that of egg phosphatidylcholine (PC), while the nature of the headgroups was varied. The ratio of metarhodopsin II (MII)/metarhodopsin I (MI) in these recombinants produced by an actinic flash was investigated as a function of pH, and compared with the photochemical activity observed for rhodopsin in native ROS membranes and dimyristoylphosphatidylcholine recombinants. In recombinants made with lipids derived from egg PC, as well as in native ROS membranes, MI and MII were found to be present in a pH-dependent, acid-base equilibrium on the millisecond timescale. The recombinants made with phospholipids containing unsaturated acyl chains were capable of full native-like MII production, but each demonstrated a titration curve with a different pK. In addition, some of the recombinants exhibited apparent deviations from the Henderson-Hasselbalch curve shape. The presence of either phosphatidylethanolamine (PE) or phosphatidylserine (PS) headgroups appeared to increase the amount of MII produced. This may result from alteration of the curvature free energy, in the case of PE, and from the influence of the membrane surface potential in the case of PS. An investigation of the effects of temperature on the MI-MII transition in native ROS membranes and the recombinants was also carried out.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
DPPC incorporation into egg-PC unilamellar vesicles reduces their oxidation rate beyond that expected from the unsaturated lipid dilution. Addition of the unsaturated lipids produces changes in the physical properties of the inner parts of the lipid bilayer, as sensed by fluorescence anisotropy of DPH, and in the hydrophilic/hydrophobic region, as sensed by the generalized polarization of laurdan. DPPC (30 mol%) incorporation into egg-PC vesicles produces a decrease in alkyl chain mobility in the inner part of the bilayer, evaluated by the increase of DPH fluorescence anisotropy, and a rise of the generalized polarization value of laurdan in the bilayer interface. It also leads to a decrease in the rate of water efflux promoted by a hypertonic shock. Oxidation of PC LUVs, promoted by AAPH, as sensed by oxygen uptake and MDA formation, leads to qualitatively similar results than DPPC addition: rigidification at the inner part and the surface of the liposomes, and a lower rate of water permeation. It is suggested that these changes could contribute to the observed decrease in oxidation rate with conversion.  相似文献   

9.
We studied the effect of a model basic peptide, hexalysiltryptophan, on the organization of dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylserine unilamellar vesicles by means of fluorescent resonance energy transfer (FRET) between fluorescently labeled phospholipids. Several FRET theoretical models assuming different bilayer geometries and probe distributions were fitted to the time-resolved data. The experiments were carried out at two temperatures in different regions of the lipid mixture phase diagram. At 45 degrees C, the expected gel/fluid phase separation was verified by model fitting in peptide-free vesicles, which from the FRET approach means that domains are larger than approximately 200 A. No noticeable alteration of membrane organization was detected upon increasing the peptide concentration. At variance, for the single fluid phase at 60 degrees C, there was a large increase in FRET efficiency upon peptide addition to the lipid vesicles, mainly caused by peptide-induced vesicle aggregation. The system gradually changed from unilamellar lipid vesicles to a multibilayer geometry, and a limit lamellar repeat distance of approximately 57 A was recovered. Furthermore, no evidence for lateral domain formation on the FRET length scale was found at this temperature, the cationic peptide being only able to induce local lipid demixing, causing a short-range sequestration of 2-3 acidic lipids around each surface-adsorbed peptide.  相似文献   

10.
The carbonyl hemoglobin (CO-Hb), which was used to prevent denaturation (metHb) during the preparation of samples, was encapsulated into lipid vesicles constituted from unsaturated phospholipid, cholesterol and unsaturated fatty acid. Unsaturated components were polymerized by γ-irradiation to enhance the stability of bilayer membrane. An aqueous dispersion of resulting Hb vesicles was freeze-dried in the presence of saccharides (50–200 mM) to obtain a dehydrated powder of Hb vesicles. Change in the vesicle size, the leakage of encapsulated Hb and the oxidation of Hb to metHb were not observed. Therefore, the long-term storage of Hb vesicles can be realized as a dry powder.  相似文献   

11.
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.  相似文献   

12.
We apply a means to probe, stabilize, and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10-30 nm. In vitro, mixing saturated and unsaturated lipids results in microdomains, which are unstable and coalesce. This inconsistency is puzzling. It has been hypothesized that biological line-active surfactants reduce the line tension between saturated and unsaturated lipids and stabilize small domains in vivo. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated, and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged, and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active cosurfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line tension between them. These findings are consistent with a recent theory and provide insight into the self-organization of lipid rafts, their stabilization, and size regulation in biomembranes.  相似文献   

13.
"Naked eye" color detection of proteins was achieved by embedding calixarene receptors within vesicles comprising phospholipids and the chromatic polymer polydiacetylene. Dramatic visible absorbance changes were induced through electrostatic interactions between the protein surface and the vesicle-incorporated hosts. The colorimetric responses could be induced by micromolar protein concentrations, and furthermore, specific protein fingerprints could be obtained by incorporating different receptors within the vesicles. Fluorescence and circular dichroism experiments confirmed the relationship between the colorimetric phenomena and protein docking on the surface of the chromatic vesicles. The colorimetric assay constitutes a generic platform for high-sensitivity detection of soluble proteins and for evaluation of protein surface charge distribution.  相似文献   

14.
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non‐enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water‐soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self‐assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.  相似文献   

15.
We studied the formation and stability of vesicles consisting of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and phosphatidylcholines by electron spin resonance (ESR) analysis and observation of their hemolytic activities. In contrast with previous findings on dimethyldialkylammoniums, DOTAP formed vesicles at 37 degrees C with phosphatidylcholines containing either saturated acyl chains such as dimyristoylphosphatidylcholine (DMPC) or unsaturated acyl chains such as dilinoleoylphosphatidylcholine (DLPC). Phosphatidylcholines made the bilayer more rigid and significantly reduced the hemolytic activity of DOTAP. In the presence of equimolar concentration of DOTAP and phosphatidylcholines, formation of tightly aggregated structures of several erythrocytes was observed, as previously reported for the vesicles containing dimethyldipalmitylammonium. These findings indicate that DOTAP vesicles were stabilized by phosphatidylcholines with either saturated acyl chains or unsaturated acyl chains, and the interaction with the lipid bilayer of biological membranes as cationic vesicles became prominent with minimal membrane damage by DOTAP monomers.  相似文献   

16.
Phospholipid-linked naphthoquinones separated by spacer methylene groups (C(n)), PE-C(n)-NQ (n=0, 5, 11), were synthesized to investigate the quinone-mediated electron transfers on a glassy carbon (GC) electrode covered with phospholipids membrane. The PE-C(n)-NQ could be incorporated in lipid bilayer composed of phosphatidylcholine and exhibited characteristic absorption spectral change corresponding to their redox state, quinone/hydroquinone. The cyclic voltammogram of PE-C(n)-NQ-containing lipid bilayer modified on a GC electrode indicated a set of waves corresponding to the consecutive two-electron and two-proton transfer reduction of the quinone moiety. The peak currents of PE-C(n)-NQ as a function of temperature showed a sharp break point in the current-temperature behavior, reflecting the gel-fluid phase transition. The shape of the cyclic voltammograms changed with the pH of the buffer solution. Below pH 6 the first step of the reduction of quinone was a monoprotonation of quinone, whereas above pH 10 the first step of the oxidation was a monodeprotonation of hydroquinone. This indicates that reaction sequences of quinone/hydroquinone were different with the change of the pH. These results showed that the PE-C(n)-NQ exhibited electron transfer associated with proton transfer in the lipid membranes, depending on the diffusivity of the redox species in the membrane and pH. Interestingly, less effect of the number of methylene of the spacer group on the peak currents was observed. Comparison of manganese porphyrin-mediated electron transfer that depends on the spacer methylene lengths [M. Nango, T. Hikita, T. Nakano, T. Yamada, M. Nagata, Y. Kurono, T. Ohtsuka, Langmuir 14 (1998) 407] is made.  相似文献   

17.
Two complementary artificial diether phospholipids were synthesized that can undergo a Cu(I)-catalyzed Huisgen-Sharpless click reaction. The resulting lipid can bridge the membranes of large unilamellar vesicles and cause their aggregation and ultimately their fusion.  相似文献   

18.
Mixtures of the phospholipids L-alpha-dimyristoylphosphatidic acid (DMPA) and L-alpha-dipalmitoylphosphatidylcholine (DPPC) have been successfully adsorbed onto the charged surface of multilayer polyelectrolyte capsules to form a novel vesicle. Leaving such vesicles in phospholipase A(2) solution, we observed the hydrolysis reaction on the surface of the lipid/polymer vesicles and a permeability change before and after the reaction by confocal-laser scanning microscopy (CLSM). A capsule with adjustable permeability was constructed. This method may provide new features for drug-release vesicles.  相似文献   

19.
Although 6-lauroyl-2-(N,N-dimethylamino)naphthalene (LAURDAN) is now widely used as a probe for lipid systems, most studies focus on the effect of the lipid environment on its emission properties but not on the excitation properties. The present study is intended to investigate the excitation properties of LAURDAN in diverse lipid environments. To this end, the fluorescence properties of LAURDAN were studied in synthetic ester and ether phosphatidylcholines and sphingomyelin vesicles below, at and above the corresponding lipid main phase-transition temperature. The excitation spectra of LAURDAN in these environments always show at least two well-resolved bands. In the different lipid vesicles the behavior of the red band in the LAURDAN excitation spectra is sensitive to the lipid chemical environment near the probe fluorescent moiety and to the packing of the different lipid phases (gel and liquid crystalline). We propose that the interaction between the LAURDAN dimethylamino group and the ester linkage of ester phospholipids is responsible for the strong stabilization of LAURDAN's red excitation band in the gel phase of ester phospholipid vesicles. We discuss the consequence of these proposed ground-state interactions on LAURDAN's emission generalized polarization function. In the context of variable excitation wavelengths, information concerning solvent dipolar relaxation through excitation generalized polarization function is also discussed.  相似文献   

20.
Spontaneous receptor-free membrane fusion with pure lipid systems, used as a cell membrane model, is demonstrated with easy-to-handle lactose-derived catanionic vesicles. This fusion, mediated and controlled by phospholipids, emphasizes the great value of these nanovesicles for enhanced direct cytosolic drug delivery without the shortcomings linked with endocytic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号