首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.  相似文献   

2.
Ever since the discovery of single-walled carbon nanotubes (SWNTs), there have been many reports and predictions on their superior properties for use in a wide variety of potential applications. However, an SWNT is either metallic or semiconducting; these properties are distinctively different in electrical conductivity and many other aspects. The available bulk-production methods generally yield mixtures of metallic and semiconducting SWNTs, despite continuing efforts in metallicity-selective nanotube growth. Presented here are significant advances and major achievements in the development of postproduction separation methods, which are now capable of harvesting separated metallic and semiconducting SWNTs from different production sources with sufficiently high enrichment and quantities for satisfying at least the needs in research and technological explorations. Opportunities and some available examples for the use of metallic SWNTs in transparent electrodes and semiconducting SWNTs in various device nanotechnologies are highlighted and discussed.  相似文献   

3.
Covalent sidewall addition to single-walled nanotubes (SWNTs) of a series of organolithium and organomagnesium compounds (nBuLi, tBuLi, EtLi, nHexLi, nBuMgCl, tBuMgCl) followed by reoxidation is reported. The functionalized R(n)-SWNTs were characterized by Raman and NIR emission spectroscopy. The reaction of SWNTs with organolithium and magnesium compounds exhibits pronounced selectivity: in general, metallic tubes are more reactive than semiconducting ones. The reactivity of SWNTs toward the addition of organometallic compounds is inversely proportional to the diameter of the tubes. This was determined simultaneously and independently for both metallic and semiconducting SWNTs. The reactivity also depends on the steric demands of the addend. Binding of the bulky t-butyl addend is less favorable than addition of primary alkyl groups. Significantly, although tBuLi is less reactive than, for example, nBuLi, it is less selective toward the preferred reaction with metallic tubes. This unexpected behavior is explained by fast electron transfer to the metallic SWNTs having low-lying electronic states close to the Fermi level, a competitive initial process. The NIR emission of weakly functionalized semiconducting SWNTs, also reported for the first time, implies interesting applications of functionalized tubes as novel fluorescent reporter molecules.  相似文献   

4.
Semiconducting-only single-walled carbon nanotube (SWNT) network field effect transistors (FETs) have been fabricated by selectively reacting all the metallic SWNTs in the devices with diazonium reagents in a controlled manner. We have shown that the concentration of diazonium reagents used is crucial for selectively eliminating metallic SWNTs and keeping semiconducting ones intact. Excessive amounts of diazonium reagents can indiscriminately react with both metallic and semiconducting SWNTs and thus degrade the performance of the devices. This new technique will facilitate the process of fabrication of high-performance SWNT-based electronic devices.  相似文献   

5.
Using first principles calculations, we report for the first time that large nearly neutral aromatic molecules, such as naphthalene and anthracene, and small charge-transfer aromatic molecules, such as TCNQ and DDQ, interact more strongly with metallic single-wall carbon nanotubes (SWNTs) versus their semiconducting counterparts as the molecular orientation of DDQ is taken into account. Hence two new mechanisms for separating metallic and semiconducting SWNTs via noncovalent pi-pi stacking or charge-transfer interaction are suggested.  相似文献   

6.
We designed and synthesized 4‐dodecyloxybenzenediazonium tetrafluoroborate ( 1 ), which preferentially reacts with metallic single‐walled carbon nanotubes (SWNTs) by kinetic control. We first determined the suitable experimental conditions for the preferential reaction of 1 with individually dissolved SWNTs by monitoring the decrease in absorbance for the metallic SWNT in the range of 400–650 nm in the absorption spectrum of the SWNTs. The reacted SWNTs were thoroughly rinsed with THF to obtain THF‐insoluble SWNTs. The Raman spectrum of the THF‐insoluble SWNTs showed a strong peak near 180 cm?1, which corresponds to a semiconducting breathing band. The metallic breathing bands (≈220 cm?1) and Breit–Wingner–Fano (BWF) modes (1520 cm?1) corresponding to the metallic SWNTs were much weaker than those of the pristine SWNTs. We also confirmed that metallic peaks in the range of 400–650 nm in the absorption spectrum of THF‐insoluble SWNTs that were individually dissolved in an aqueous micelle of sodium cholate were almost nondetectable. All the results indicate that the THF‐insoluble SWNTs are semiconducting.  相似文献   

7.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

8.
A derivatized porphyrin with long alkyl chains, 5,10,15,20-tetrakis(hexadecyloxyphenyl)-21H,23H-porphine, is selective toward semiconducting single-walled carbon nanotubes (SWNTs) in presumably noncovalent interactions, resulting in significantly enriched semiconducting SWNTs in the solubilized sample and predominantly metallic SWNTs in the residual solid sample according to Raman, near-IR absorption, and bulk conductivity characterizations.  相似文献   

9.
Zhang H  Wu B  Hu W  Liu Y 《Chemical Society reviews》2011,40(3):1324-1336
Single-walled carbon nanotubes (SWNTs) possess unique electronic properties that make them very promising materials for use in both nano-electronics and thin film devices. However, SWNTs are always produced as a mixture of metallic and semiconducting nanotubes, which is a major roadblock to their widespread application. This tutorial review provides a brief summary of ways of separating single-walled carbon nanotubes into metallic and semiconducting fractions. Various methods including selective growth, selective removal, selective adsorption and band structure modulation--all of which aim to produce pure SWNTs with well-defined electronic properties--are systematically discussed. The main problems in this field, the outlook for separation techniques and some views of future developments are presented.  相似文献   

10.
In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.  相似文献   

11.
The dispersion of small-diameter single-walled carbon nanotubes (SWNTs) produced by the CoMoCAT method in tetrahydrofuran (THF) with the use of amine was studied. The absorption, photoluminescence, and Raman spectroscopies showed that the dispersion and centrifugation process leads to an effective separation of metallic SWNTs from semiconducting SWNTs. Since this method is simple and convenient, it is highly applicable to an industrial utilization for widespread applications of SWNTs.  相似文献   

12.
Selective covalent surface modification of single‐walled carbon nanotubes (SWNTs) is of great importance to various carbon nanotube‐based applications as it might offer an alternative method for enriching metallic and semiconducting nanotubes. Herein, we report on the surface modification of SWNTs through 1,3‐dipolar cycloaddition of 3‐phenyl‐phthalazinium‐1‐olate, which is a stable and reactive azomethine imine. For this reaction, microwave heating was found to be more efficient than conventional and solvent‐free heating. The sensitivity of cycloaddition to the molecular structure of SWNTs was probed using resonance Raman spectroscopy with three different laser excitations. Based on the obtained results, azomethine imine addition to the surface of nanotubes is selective for metallic and large‐diameter semiconducting SWNTs. Thermogravimetric analysis coupled with mass spectrometry showed that fragments released at high temperatures corresponded to the phenylphthalazine group, thus confirming the covalent surface functionalization. Modified SWNTs were further characterized by X‐ray photoelectron and UV/Vis‐NIR spectroscopies.  相似文献   

13.
The encapsulation of viologen derivatives into metallic single‐walled carbon nanotubes (SWNTs) results in the opening of a band gap, making the SWNTs semiconducting. Raman spectroscopy, thermogravimetric analysis, and aberration‐corrected high‐resolution transmission electron microscopy confirm the encapsulation process. Through the fabrication of field‐effect transistor devices, the change of the electronic structure of the tubes from metallic to semiconducting upon the encapsulation is confirmed. The opening of a gap in the band structure of the tubes was not detected in supramolecular controls.  相似文献   

14.
The electrochemical response of two-dimensional networks of pristine single-wall carbon nanotubes (SWNTs) has been investigated. SWNTs were grown by catalyzed chemical vapor deposition on an insulating SiO2 substrate, and then electrically contacted by lithographically defined Au electrodes. Subsequent insulation of the contact electrodes enabled the electrochemical properties of the SWNT network to be isolated and directly studied for the first time. The electrochemical activity of the SWNT network was found to be strongly dependent on the applied potential. For the same SWNT electrode, the limiting current for the oxidation of 5 mM Fe(phen)32+ was found to be much greater than expected based on the signal for the reduction of 5 mM Ru(NH3)63+. Simultaneous conductance and electrochemical measurements demonstrated decreasing conductance as the potential was scanned negative (versus Ag/AgCl) with the minimum conductance at around the reduction potential for Ru(NH3)63+. These results are consistent with the presence of both metallic and semiconducting SWNTs in the SWNT network electrode. Moreover, these results show that through appropriate choice of mediator and electrode potential, metallic SWNTs can be electrochemically addressed independently of semiconducting SWNTs.  相似文献   

15.
A maskless method for the fabrication of electrical or mechanical contacts to the single-walled carbon nanotubes (SWNTs) by selective electrodeposition is reported. Both semiconducting SWNTs and metallic SWNTs can be pinned on prepatterned electrodes by the locally deposited metal, leaving the section of SWNTs between the electrodes clean. The distribution of deposited metal on the SWNTs is mainly determined by the covering power of the plating bath and the plating potential. This research provides a parallel method for the large-scale integration of SWNTs into electronic, optoelectronic, and sensing systems.  相似文献   

16.
We theoretically investigate the separation of individualized metallic and semiconducting single-wall carbon nanotubes (SWNTs) in a dielectrophoretic (DEP) flow device. The SWNT motion is simulated by a Brownian dynamics (BD) algorithm, which includes the translational and rotational effects of hydrodynamic, Brownian, dielectrophoretic, and electrophoretic forces. The device geometry is chosen to be a coaxial cylinder because it yields effective flow throughput, the DEP and flow fields are orthogonal to each other, and all the fields can be described analytically everywhere. We construct a flow-DEP phase map showing different regimes, depending on the relative magnitudes of the forces in play. The BD code is combined with an optimization algorithm that searches for the conditions that maximize the separation performance. The optimization results show that a 99% sorting performance can be achieved with typical SWNT parameters by operating in a region of the phase map where the metallic SWNTs completely orient with the field, whereas the semiconducting SWNTs partially flow-align.  相似文献   

17.
18.
The presence of metallic nanotubes in as-grown single walled carbon nanotubes (SWNTs) is the major bottleneck for their applications in field-effect transistors. Herein, we present a method to synthesize enriched, semiconducting nanotube arrays on quartz substrate. It was discovered that introducing appropriate amounts of water could effectively remove the metallic nanotubes and significantly enhance the density of SWNT arrays. More importantly, we proposed and confirmed that the high growth selectivity originates from the etching effect of water and the difference in the chemical reactivities of metallic and semiconducting nanotubes. Three important rules were summarized for achieving a high selectivity in growing semiconducting nanotubes by systematically investigating the relationship among water concentration, carbon feeding rate, and the percentage of semiconducting nanotubes in the produced SWNT arrays. Furthermore, these three rules can be applied to the growth of random SWNT networks on silicon wafers.  相似文献   

19.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

20.
We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号