首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

2.
A linear relationship exists between the glass transition temperature (T g) and the quadrupole splitting (Δ) of Fe(III). The linear relationship, termed ‘T g-Δ rule’, has been verified in 60CaO·(40-x)Al2O3·xFe2O3, 60CaO·10BaO·(30-x) Al2O3·xFe2O3, 60CaO·(40-x)Ga2O3·xFe2O3, and 50CaO·(50-x)Ga2O3·xFe2O3 glasses. In these glasses, both theT g and Δ decrease linearly with an increasing content of Fe2O3 (≈40 mol%). The slope of the straight line, obtained from the plot of theT g vs. Δ, was calculated to be 670≈700, °C/(mm·s−1), revealing that the Fe(III) constitutes the skeleton of aluminoferrate and galloferrate glasses.  相似文献   

3.
Thermal behaviour of the glass series (100-x)[50ZnO-10B2O3-40P2O5xSb2O3 (x=0-42 mol%) and (100-y)[60ZnO-10B2O3-30P2O5ySb2O3 (y=0-28 mol%) was investigated by DSC and TMA. The addition of Sb2O3 results in a decrease of the glass transition temperature and crystallization temperature in both compositional series. All glasses crystallize on heating in the temperature range of 522–632°C. Thermal expansion coefficient of the glasses monotonously increases with increasing Sb2O3 content in both series and varies within the range of 6.6–11.7 ppm °C−1. From changes of thermal capacity within the glass transition region it was concluded that with increasing Sb2O3 content the ‘fragility’ of the studied glasses increases.  相似文献   

4.
Radiation dose-risk assessment was carried out for cereal species Brassica compestris var. dichotoma, Oryza sativa var. Shalum1, Zea mays, Lactuca indica, Cumunis sativum, and Clocasia esculanta due to naturally available radionuclides 40K, 238U and 232Th in Domiasiat area. The activity in biota and corresponding soil was measured by precipitation method using NaI(TI) detector. Transfer factor (TF) was for Oryza spp. (1.00E−01-40K, 8.76E−05-232Th, and 9.11E−05-238U), for Brassica spp. (5.39E−01-40K, 8.17E−04-232Th and 2.96E−04-238U) and for Zea spp. (3.41E−01-40K, 5.84E−05-232Th, 8.87E−05-238U) etc., respectively. A detailed physio-morphological study of the biota and extensive investigation of ecosystem was carried out for assessment. The data was modeled using FASSET for dose estimation and obtained total dose was 1.58E−04  \upmu Gy h-1 \upmu \hbox{Gy}\,h^{-1} in Oryza spp., 2.87E−04  \upmu Gy h-1 \upmu \hbox{Gy}\,h^{-1} Brassica spp. and 6.90E−03  \upmu Gy h-1 \upmu \hbox{Gy}\,h^{-1} in Zea spp. etc. The dose was compared with the UNSCEAR dataset for screening level dose for biota. Zea spp. was more susceptible for the chronic radiation exposure.  相似文献   

5.
The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.  相似文献   

6.
The preparation and characterization of the M′–M′′–O nitrate–tartrate (M′ = Ca, Ba, Gd and M′ = W, Mo) precursor gels synthesized by simple, inexpensive, and environmentally benign aqueous sol–gel method is reported. The obtained gels were studied by thermal (TG/DSC) analysis. TG/DSC measurements revealed the possible decomposition pathway of synthesized M′–M′′–O nitrate–tartrate gels. For the synthesis of different metal tungstates and molybdates, the precursor gels were calcined at different temperatures (650, 800, and 900 °C). According to the X-ray diffraction (XRD) analysis data, the crystalline compounds CaMo1-x W x O4 doped with Ce3+ ions, BaMo1-x W x O4 doped with Eu3+ ions and Gd2Mo3O12 were obtained from nitrate–tartrate gels annealed at 650–900 °C temperatures. The XRD data confirmed that the fully crystalline single-phase powellite, scheelite, or Gd2(MoO4)3 structures were formed already at 650 °C. Therefore, the suggested sol–gel method based on the complexation of metal ions with tartaric acid is suitable for the preparation of mixed tungstates–molybdates at relatively low temperature in comparison with solid-state synthesis.  相似文献   

7.
The Dupuytren contracture - degenerative shortening of the palmar aponeurosis - is a common disease of the hand in Europe. The aetiology of the degenerative changes in the collagen structures is still not clear. To describe the clinical manifestation of the disease we use an international classification according to Iselin. Our hypothesis was that in Dupuytren disease there is a clear pathological abnormality in the tissue elements building up the palmar aponeurosis, which is responsible for the disease, and could be monitored besides the classical histological methods by differential scanning calorimetry. The thermal denaturation of different parts of human samples was monitored by a SETARAM Micro DSC-II calorimeter. All the experiments were performed between 0 and 100°C. The heating rate was 0.3 K min−1. DSC scans clearly demonstrated significant differences between the different types and conditions of samples (control: T m=63°C and ΔH cal=4.1 J g−1, stage I.: T m= 63°C and ΔH cal=5.1 J g−1, stage II.: T m=64°C and ΔH cal=5.2 J g−1, stage III.: T m=60°C and ΔH cal=5.2 J g−1, stage IV.: T m=60.2°C and ΔH cal=5.3 J g−1). The heat capacity change between native and denatured states of aponeurosis samples increased with the degree of structural alterations indicating significant water loosing. These observations could be explained with the structural alterations caused by the biochemical processes. With our investigations we could demonstrate that DSC is a useful and well applicable method for the investigation of collagen tissue of the human aponeurosis. Our results may be of clinical relevance in the future i.e. in the choice of the optimal time of surgical therapy of different clinical level Dupuytren contractures.  相似文献   

8.
The regularities of chemical reactions in solid 8-hydroxyquinoline—chloramine B mixtures were studied under conditions of organic self-propagating high-temperature synthesis (SHS), isothermal reaction, and thermal explosion in the 20–220 °C temperature range. Comprehensive physicochemical analysis and microstructural study of the reaction products were carried out. The temperature of SHS initiation (58 °C), the heat of the reaction (129±9 kJ mol−1), the stoichiometric coefficient (1), the maximum temperature (T max=98–140 °C), and the velocity of SHS wave propagation (u=0.15–0.55 mm s−1) were determined. Depending on the ratio of the reactants (n), a low-temperature non-degeerate stable gasless mode (n≤1,T max=115 °C,E a=42 kcal mol−1) and a high-temperature mode (n>1,T max=140 °C,E a=0.4 kcal mol−1) are possible for SHS. The SHS affords monohydroxy and monochloro derivatives of 8-hydroxyquinoline, benzenesulfonamide, NaCl, NaOH, and H2O. The mechanism of the solid-phase reaction at temperatures below 58 °C includes surface, solid-phase, and gas-phase diffusion; that for SHS is capillary spreading of the hydroxyquinoline melt. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2271–2284, December, 1999.  相似文献   

9.
Mesoporous Mn–Ni oxides with the chemical compositions of Mn1-x Ni x O δ (x = 0, 0.2, and 0.4) were prepared by a solid-state reaction route, using manganese sulfate, nickel chloride, and potassium hydroxide as starting materials. The obtained Mn–Ni oxides, mainly consisting of the phases of α- and γ-MnO2, presented irregular mesoporous agglomerates built from ultra-fine particles. Specific surface area of Mn1–x Ni x O δ was 42.8, 59.6, and 84.5 m2 g−1 for x = 0, 0.2, and 0.4, respectively. Electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol L−1 KOH electrolyte. Specific capacitances of Mn1-x Ni x O δ were 343, 528, and 411 F g−1 at a scan rate of 2 mV s−1 for x = 0, 0.2, and 0.4, respectively, and decreased to 157, 183, and 130 F g−1 with increasing scan rate to 100 mV s−1, respectively. After 500 cycles at a current density of 1.24 A g−1, the symmetrical Mn1–x Ni x O δ capacitors delivered specific capacitances of 160, 250, and 132 F g−1 for x = 0, 0.2, and 0.4, respectively, retaining about 82%, 89%, and 75% of their respective initial capacitances. The Mn0.8Ni0.2O δ material showed better supercapacitive performance, which was promising for supercapacitor applications.  相似文献   

10.
The low-temperature heat capacity C p,m of erythritol (C4H10O4, CAS 149-32-6) was precisely measured in the temperature range from 80 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=390.254 K from the experimental C p-T curve. The molar enthalpy and entropy of this transition were determined to be 37.92±0.19 kJ mol−1 and 97.17±0.49 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined: Δc H m0(C4H10O4, cr)= −2102.90±1.56 kJ mol−1 and Δf H m0(C4H10O4, cr)= − 900.29±0.84 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

11.
The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m0), and the molar entropy (Δfus S m0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.  相似文献   

12.
The molar heat capacity C p,m of 1,2-cyclohexane dicarboxylic anhydride was measured in the temperature range from T=80 to 390 K with a small sample automated adiabatic calorimeter. The melting point T m, the molar enthalpy Δfus H m and the entropy Δfus S m of fusion for the compound were determined to be 303.80 K, 14.71 kJ mol−1 and 48.43 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 273.15] and [S T-S 273.15] were derived in the temperature range from T=80 to 385 K with temperature interval of 5 K. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetry (TG), when the process of the mass-loss was due to the evaporation, instead of its thermal decomposition.  相似文献   

13.
The aim of this paper was to study the synthesis and characterization of spinel-containing mullite based materials, using sol-gel techniques. Several gels were prepared, with nominal compositions 3(Al2−2xMx TixO3)·2SiO2 and 3(Al2−xMxO3)·2SiO2, with M=Ni+2 or Co+2 and 0.0≤x≤0.2, by hydrolysis and condensation of mixtures of aluminum, silicon and titanium alkoxides and nickel chloride. Dried gels were homogeneous and displayed a glass transition at around 750°C, which indicated that the system could be described as an amorphous silicoaluminate network. Crystallization pathway of gels were followed using differential thermal analysis and X-ray diffraction patterns of samples thermal treated at temperatures in the range between 800 and 1400°C. A two-phase aluminate spinel-mullite arrangement was detected at temperatures around 1200°C. The microstructure of the final product was interesting, because the minor secondary phase was homogeneously dispersed in the mullite matrix. Chemical and thermal resistance of diphasic materials were tested and the results indicate that these materials can be used as high temperature ceramic pigments.  相似文献   

14.
Perovskite-type compounds, Li x La(1− x )/3NbO3 and (Li0.25La0.25)1− x Sr0.5 x NbO3 as lithium ionic conductors, were synthesized by a solid-state reaction. From powder X-ray diffraction, the solid solution ranges of the two compounds were determined to be 0≤x≤0.25 and 0≤x≤0.125, respectively. In the Li x La(1− x )/3NbO3 system, the ionic conductivity of lithium at room temperature, σ25, exhibited a maximum value of 4.7 × 10−5 S · cm−1 at x = 0.10. However, because of the decrease in the lattice parameters with increasing Li concentration , σ25 of the samples decreased with increasing x from 0.10 to 0.25. Also, in the (Li0.25La0.25)1− x Sr0.5 x NbO3 system, the lattice parameter increased with the increase of Sr concentration and the σ25 achieved a maximum (7.3 × 10−5 S · cm−1 at 25 °C) at x = 0.125. Received: 12 September 1997 / Accepted: 15 November 1997  相似文献   

15.
16.
A method for estimating the critical temperatures (T b) of thermal explosion for energetic materials is derived from Semenov’s thermal explosion theory and the non-isothermal kinetic equation dα/dt=A 0 T B f(α)e−E/RT using reasonable hypotheses. The final formula of calculating the value of T b is $ \left( {\frac{B} {{T_b }} + \frac{E} {{RT_b^2 }}} \right) $ \left( {\frac{B} {{T_b }} + \frac{E} {{RT_b^2 }}} \right) (T bT e0=1. The data needed for the method, E and T e0, can be obtained from analyses of the non-isothermal DSC curves. When B=0.5 the critical temperature (T b) of thermal explosion of azido-acetic-acid-2-(2-azido-acetoxy)-ethylester (EGBAA) is determined as 475.65 K.  相似文献   

17.
Heat capacity C p(T) of the orthorhombic polymorph of L-cysteine was measured in the temperature range 6–300 K by adiabatic calorimetry; thermodynamic functions were calculated based on these measurements. At 298.15 K the values of heat capacity, C p; entropy, S m0(T)-S m0(0); difference in the enthalpy, H m0(T)-H m0(0), are equal, respectively, to 144.6±0.3 J K−1 mol−1, 169.0±0.4 J K−1 mol−1 and 24960±50 J mol−1. An anomaly of heat capacity near 70 K was registered as a small, 3–5% height, diffuse ‘jump’ accompanied by the substantial increase in the thermal relaxation time. The shape of the anomaly is sensitive to thermal pre-history of the sample.  相似文献   

18.
Ba1−x Sr x TiO3(x = 0–0.5, BST) nanofibers with diameters of 150–210 nm were prepared by using electrospun BST/polyvinylpyrrolidone (PVP) composite fibers by calcination for 2 h at temperatures in the range of 650–800 °C in air. The morphology and crystal structure of calcined BST/PVP nanofibers were characterized as functions of calcination temperature and Sr content with an aid of XRD, FT-IR, and TEM. Although several unknown XRD peaks were detected when the fibers were calcined at temperatures less than 750 °C, they disappeared with increasing the temperature (above 750 °C) due to its thermal decomposition and complete reaction in the formation of BST. In addition, the FT-IR studies of BST/PVP fibers revealed that the intensities of the O–H stretching vibration bands (at 3430 and 1425 cm−1) became weaker with increasing the calcination temperature and a broad band at 540 cm−1, Ti–O vibration, appeared sharper and narrower after calcination above 750 °C due to the formation of metal oxide bonds. However, no effect of Sr content on the crystal structure of the composites was detected.  相似文献   

19.
    
Hirudonine sulphate (C9H23N7. 1·5 H2SO4. 2·5 H2O) is triclinic inPI space group with cell constantsa=7·168(9),b=14·534(6),c=11·918(5) ?, α=110·50(3), β=108·75(6) and γ=79·16(6)°,V=1097(2)?3,Mr=421·4,Z=2,d x=1·358(2) gcm−3,d c=1·276 gcm−3. MoKα (λ=0·7903 ?), μ=1·94 cm−1,F(000)=436,T=295 K,R(F)=0·144. The structure was solved by direct methods and refined to a final R factor of 0·144 for 1036 unique reflections. One of the sulphur atoms is in special position and is disordered. The amine molecule is hydrogen-bonded to the sulphate oxygen through water molecules. Water channels are formed at unique places involving water oxygens, amine and sulphate oxygens along thea axis. DCB contribution Number 712.  相似文献   

20.
The electrochemical behaviour of new doped Li-M-Mn-O (M = Al, Fe, Ni) spinel oxides in liquid electrolyte lithium cells was studied. The insertion electrode materials were obtained by heating stoichiometric amounts of thoroughly mixed LiOH and M x Mn1− x CO3 (M = Fe, Ni; x = 0.08−0.15) or Al x Mn1− x (CO3) (OH) y , in the case of Al, at 380 °C in air for 20 h. The transition metal-doped samples, particularly those containing Ni or obtained at low temperatures, where the resulting spinel was cation-deficient and highly disordered, exhibited the best cycling performance in the potential window 3.3−2.3 V. Cell capacity was retained by 80% after 200 cycles. Capacity fading was observed on increasing the firing temperature, together with improved crystallinity and the disappearance of cation vacancies. This impaired electrochemical behaviour is ascribed to a Jahn-Teller effect, which induces an X-ray-detectable cubic-tetragonal phase transition upon lithium insertion. The phase transition was undetectable in the low-temperature samples. The influence of the Jahn-Teller distortion is thus seemingly lessened by a highly disordered structure. Received: 25 November 1997 / Accepted: 28 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号