首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the magnetic dilution and electronic nature of Zn doping on the Mn site in the colossal magnetoresistant material La0.7Pb0.3MnO3 (x≤0.3). Small non-magnetic Zn2+ doping tends to separate the system into ferromagnetic clusters to weaken the long-range ferromagnetic order and to reduce the Curie temperature. The spin polarizability of the x=0–0.3 samples is estimated to be 0.97–1.00, indicating that the x=0–0.3 samples are the spin polarized materials in which the conductivity is dominated by single-spin charge carriers. Small doping (x≥0.1) induces the metal–insulator transition and destroys the metallic state with long-range ferromagnetic order.  相似文献   

2.
Thermodynamic properties of the J1J2J3 quantum Heisenberg model are investigated on a square lattice with spin S = 1/2. The calculation of spin–spin correlators, spin excitation spectra, susceptibility, and heat capacity within a spherically symmetric approach shows that the third exchange J3 may qualitatively change the properties of the system. Along with standard short-range order (antiferromagnetic, ferromagnetic, and stripe) structures, various quantum helices arise. In particular, these structures may be isotropic with a local minimum of the spectrum along a circle in the Brillouin zone. The character of these states represents both ferromagnetic and antiferromagnetic “twisted” quantum spin ordering. Moreover, a range of parameters is determined in which heat capacity exhibits two-peak temperature behavior.  相似文献   

3.
The magnetic structure of the disordered alloy Fe65Ni28Mn7 was investigated in the temperature 4.2–300 K by the methods: small angle scattering of neutrons, Mössbauer effect, magnetization, magnetic contribution to the thermal coefficient of the thermal expansion, and resistivity. All measurements show that long-range ferromagnetic order appears below Tc ? 160 K. At the same time for T ? 100 K, a dramatic change of magnetic state takes place which is interpreted as the freezing of “spin glass”. An increase of the magnetic contribution to the resistivity with decreasing temperature was also found. This increase was attributed to the existence of poor-bonded magnetic moments of the Kondo-type. A model of the magnetic ground state is proposed which includes the details of magnetic behavior such as long-range ferromagnetic order, spin glass, finite ferro-and antiferromagnetic clusters, and Kondo-type states. A magnetic phase diagram of the system Fe65(Ni1?xMnx)35 is also proposed.  相似文献   

4.
5.
We use the spin-rotation-invariant Green’s function method as well as thehigh-temperature expansion to discuss the thermodynamic properties of the frustratedspin-S J 1-J 2 Heisenbergmagnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighborbonds J 1<0 and antiferromagnetic next-nearest-neighbor bonds J 2 ≥ 0 andarbitrary spin S. We find that the transition point\hbox{$J_2^c$}J2cbetween the ferromagnetic ground state and theantiferromagnetic one is nearly independent of the spin S, i.e., it is very closeto the classical transition point\hbox{$J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|$}J2c,clas=23|J1|. At finite temperatures we focus on the parameterregime\hbox{$J_2<J_2^c$}J2<J2cwith a ferromagnetic ground-state. We calculate theCurie temperature T C (S, J 2)and derive an empirical formula describing the influence of the frustration parameterJ 2 and spin S on T C . We find that theCurie temperature monotonically decreases with increasing frustration J 2, where veryclose to\hbox{$J_2^{c,{\rm clas}}$}J2c,clasthe T C (J 2)-curveexhibits a fast decay which is well described by a logarithmic term\hbox{$1/\textrm{log}(\frac{2}{3}|J_1|-J_{2})$}1/log(23|J1|?J2). To characterize the magnetic ordering below and aboveT C , we calculate thespin-spin correlation functions ?S 0 S R ?, the spontaneous magnetization, the uniform static susceptibilityχ 0 as well as the correlation lengthξ.Moreover, we discuss the specific heat C V and the temperaturedependence of the excitation spectrum. As approaching the transition point\hbox{$J_2^c$}J2csome unusual features were found, such as negativespin-spin correlations at temperatures above T C even though theground state is ferromagnetic or an increase of the spin stiffness with growingtemperature.  相似文献   

6.
First-principles calculations have been performed to study the electronic band structure and ferromagnetic properties of the double perovskite Sr2CrReO6. The density of states (DOS), the total energy, and the spin magnetic moment were calculated. The calculations reveal that the Sr2CrReO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is 1.0 μB, in good agreement with the experimental value. By analysis of the band structure, we propose that the ordered double perovskite Sr2CrReO6 is a strong candidate for half-metallic ferromagnet.  相似文献   

7.
By using the method of exact diagonalization, we investigated the properties of the distorted mixed spin (1, 1/2) diamond chain with antiferromagnetic interactions along the rung and leg. The ground states of this model contain the sawtooth chain state and the rung dimer plus Haldane state. The research on the origin of the spin gap of the model discloses that there are three different types of spin excitations at different parameter regimes due to the competition among the interactions J1, J2 and J3.  相似文献   

8.
The Tm1?x TbxCo2 (0 ≤ x ≤ 1) system was studied by measuring the magnetic susceptibility, electrical resistance, and neutron diffraction. In the compounds with 0 < x ≤ 0.15, an inhomogeneous magnetic state characterized by the existence of large regions (up to 100 Å in size) with short-range ferrimagnetic order was found to occur. The maximum of the residual electrical resistance observed in the compound with x = 0.1 at the magnetic ordering temperature was established to be due to the scattering of conduction electrons by localized spin fluctuations associated with f-d exchange fluctuations caused by the substitution of terbium for thulium. The increase in the terbium concentration to x ≥ 0.15 leads to a sharp increase in the Co sublattice magnetization and the establishment of a long-range ferromagnetic order, which indicates a concentration metamagnetic transition in the band subsystem.  相似文献   

9.
Basing on the two-spin-per-site Heisenberg model, the effect of single-ion uniaxial anisotropy on the phase diagrams of magnetic system in the presence of internal spin fluctuation has been investigated by use of the mean field theory. It was found that single-ion uniaxial anisotropy has important effect on the phase digrams. In the ferromagnetic case (J3>0) the positive single-ion uniaxial anisotropies (D) suppress the internal spin fluctuation and raise the phase trasition temperature, and negative single-ion uniaxial anisotropies (D) increase the internal spin fluctuation and reduce the phase trasition temperature. In the antiferromagnetic case (J3<0), there exist two critical values Jc1 and Jc2 (|Jc2|<|Jc1|) in the positive D values. In the |J3|<|Jc2| range intra-spin exchange coupling prevails inter-spin exchange coupling, the positive D values suppress the internal spin fluctuation and raise the phase transition temperature. In the |J3|>|Jc1| range the two sub-spins behave as a rigid spin and the positive D values make the reduction of the phase transition temperature. We also observe that the larger D values make the range of internal spin fluctuation to move towards the larger |J3| range.  相似文献   

10.
First-principles calculations are carried out in order to find the ferromagnetism dependence on the number of holes substituted for Sn sites. The results show that strong localization of defect states of the p bands of the oxygen atoms near the dopants favors high-spin states and local moment formation. These states appear to be ferromagnetically coupled with a rather long-range magnetic interaction, resulting in a half-metallic ferromagnetic ground state for the whole systems. Analysis of the total energies indicates that the induced well-confined ferromagnetism in the oxygen p orbitals due to hole doping is quite possible and easily controlled in these systems, which indicate a new way to develop a half-metallic ferromagnet in nonmagnetic d0 oxides.  相似文献   

11.
By means of the generalized static replica symmetric spin glass theory, a quantum HeisenbergS=1/2 spin glass model with the infinite-ranged random Dzyaloshinskii-Moriya (DM) interaction and ferromagnetic coupling is investigated. The dependence of entropy, specific heat, susceptibility and the corresponding order parameters on temperature is studied numerically for different ferromagnetic interactions and fixed anisotropy. Two spin glass phases has been found including transverse and mixed spin glass phases. It has been shown that the local susceptibility exhibits double-cusp features for different ferromagnetic coupling (J 0). Phase transition poins are found in the specific heat-temperature plane at various ferromagnetic coupling values. Additionally, the dependence of the spontaneous moment on temperature is calculated.  相似文献   

12.
The electronic structure and ferromagnetic stability of Co-doped SnO2 are studied using the first-principle density functional method within the generalized gradient approximation (GGA) and GGA+U schemes. The addition of effective UCo transforms the ground state of Co-doped SnO2 to insulating from half-metallic and the coupling between the nearest neighbor Co spins to weak antimagnetic from strong ferromagnetic. GGA+UCo calculations show that the pure substitutional Co defects in SnO2 cannot induce the ferromagnetism. Oxygen vacancies tend to locate near Co atoms. Their presence increases the magnetic moment of Co and induces the ferromagnetic coupling between two Co spins with large Co-Co distance. The calculated density of state and spin density distribution calculated by GGA+UCo show that the long-range ferromagnetic coupling between two Co spins is mediated by spin-split impurity band induced by oxygen vacancies. More charge transfer from impurity to Co-3d states and larger spin split of Co-3d and impurity states induced by the addition of UCo enhance the ferromagnetic stability of the system with oxygen vacancies. By applying a Coulomb UO on O 2 s orbital, the band gap is corrected for all calculations and the conclusions derived from GGA+UCo calculations are not changed by the correction of band gap.  相似文献   

13.
The spin system of the Heisenberg model (s=1/2) on a square lattice with antiferromagnetic (AFM) exchange between nearest neighbors (in which there is no long-range magnetic order at any T≠0) is treated as a spatially homogeneous isotropic spin liquid. The double-time temperature Green’s function method is used in the framework of a second-step decoupling scheme. It is shown that, as T → 0, the spin liquid goes over (without any change in symmetry) to a singlet state with energy (per bond) ?0=?0.352 and the correlation length diverges as ξ ∝ T ?1 exp(T 0/T). The spatial spin correlators oscillate in sign with distance, as in the AFM state. The theory allows one to calculate the main characteristics of the system in all temperature ranges.  相似文献   

14.
A simplified model of the Jahn-Teller band effect in a conducting ferromagnet with two degenerate subbands with the peak density of states of itinerant electrons is considered. It is found that the martensite transition temperature in a narrow-band conductor as a function of the position of the Fermi level near the peak of the energy density of states varies nonmonotonically in the narrow spin electron subband. The magnetic field dependence of the martensite-austenite structural phase transition temperature in the ferromagnet is analyzed. The developed theory and calculated data for the electron density of states in Ni2MnGa are used as the basis for estimating the variation of the martensite transition temperature with the magnetic field (?T m /?H), which demonstrates a satisfactory agreement with experimental data for the Heusler alloy Ni2+x Mn1?x FeyGa1?y .  相似文献   

15.
Hysteresis loop and ac susceptibility measurements were performed on three series of amorphous alloys: (AwB1-w)75P16B6Al3, where (A, B) are (Fe, Ni), (Co, Ni) and (Fe, Mn). Upon cooling, low w alloys undergo paramagne t to spin glass transitions. Alloys with higher w first experience a Curie transition to a ferromagnetic state, and then a spin freezing transition to a spin glass state. the T dependence of the width of the ac hysteresis loop is used to determine the spin freezing transition temperature. A magnetic phase diagram is presented for each alloy series and the value of w required for ferromagnetism, wC, is determined. When measured in the presence of small constant fields, the ac susceptibility of alloys with w just above wC has maxima near both transition temperatures. The field and temperature dependences of the peaks are explained by scaling arguments, used to determine the critical exponent δ for the Curie transition, and suggest that a similar scaling law holds for the ferromagnet to spin glass transition.  相似文献   

16.
We have studied the field dependence of the sublattice magnetization of ferrimagnetic yttrium iron garnet (YIG) using neutron scattering. In contrast to the macroscopic spontaneous magnetization that shows the normal field dependence of a soft ferromagnet (sudden saturation at the demagnetization field and no hysteresis) in neutron scattering a field induced first order spin flop transition with considerable hysteresis is observed at a critical field of Hc∼580 G (external field). Considering that with neutron scattering the antiferromagnetic component of ∼4/5 of the total moment is detected preferentially while in the macroscopic magnetization samples the ferromagnetic component of ∼1/5 exclusively it becomes clear that ferromagnetic and antiferromagnetic component have a completely independent field (and temperature) dependence. This indicates that the two magnetic structures have to be viewed as two weakly coupled order parameters. In the zero field ground state the moment orientations of the two ordering structures are orthogonal. Only for fields H0>Hc a nearly collinear ferrimagnetic order is established by the field.  相似文献   

17.
We study the effect of interionic anisotropy on the phase states of a non-Heisenberg ferromagnet with magnetic ion spin S = 1. It is shown that depending on the relation between the interionic anisotropy constants, uniaxial and angular ferromagnetic and nonmagnetic phases exist in the system. We analyze the dynamic properties of the system in the vicinity of orientational phase transitions, as well as a phase transition in the magnetic moment magnitude. It is shown that orientational phase transitions in ferromagnetic and nematic phases can be first- as well as second-order.  相似文献   

18.
The distribution of the spin-singlet component, the short-range spin-triplet component with zero projection, and the long-range spin-triplet component with projection ±1 of the superconducting pairing function has been obtained for different regimes of switching of a spin valve with a three-layer heterostructure (superconductor/ferromagnet/ferromagnet). The distribution of the components is discussed as the main reason for the behavior of the superconducting transition temperature as a function of the angle between the magnetic moments of the ferromagnetic layers in these regimes.  相似文献   

19.
The materials crystallize in the NaCl structure. UP undergoes at 122 K a first order transition into a type I single-k antiferromagnetic state, followed by a second first order transition into a type I double-k-structure at 22 K. UTe is a ferromagnet withT c =104 K. The two first order transitions of UP reveal themselves by abrupt changes of the transverse field damping rate. No spin rotation is observed in zero field for both antiferromagnetic spin structures which is in keeping with point dipolar lattice sums. In UTe we observe the characteristic critical behavior: a rapid increase of damping rate and paramagnetic frequency shift when approachingT c from above. In the ferromagnetic regime the spin rotation in zero field damps out too rapidly to be observed. This work has been funded in part by the German Federal Minister for Research and Technology (BMFT) under contract Nr. 03-KA1-TUM-4.  相似文献   

20.
The ground state and phase transition of Co2Cl(OH)3 were investigated by Monte Carlo simulation. This compound is a magnet, with a pyrochlore structure distorted along one axis. The magnetic structure at low temperatures consists of coexisting ferromagnetism and random spin, according to experiments. However, the formation mechanism of the coexistence and the interaction between the spins were unclear. We assumed an anisotropic Ising model and examined the ground state by multicanonical Monte Carlo simulation. In a nearest neighbor model, the ground states were highly degenerated. Almost all of the states were spin glass states, but a few of the states were ferromagnetic. The latter magnetic states were ferromagnetic at triangular layers and two in-one out random state at Kagome layers. The latter states should be stabilized if weak ferromagnetic interactions exist between second nearest neighbor spins and correspond to the states reported by the experiments. This expectation was confirmed by simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号