首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider the critical focusing wave equation $(-\partial _t^2+\Delta )u+u^5=0$ in ${\mathbb{R }}^{1+3}$ and prove the existence of energy class solutions which are of the form $$\begin{aligned} u(t,x)=t^\frac{\mu }{2}W(t^\mu x)+\eta (t,x) \end{aligned}$$ in the forward lightcone $\{(t,x)\in {\mathbb{R }}\times {\mathbb{R }}^3: |x|\le t, t\gg 1\}$ where $W(x)=(1+\frac{1}{3} |x|^2)^{-\frac{1}{2}}$ is the ground state soliton, $\mu $ is an arbitrary prescribed real number (positive or negative) with $|\mu |\ll 1$ , and the error $\eta $ satisfies $$\begin{aligned} \Vert \partial _t \eta (t,\cdot )\Vert _{L^2(B_t)} +\Vert \nabla \eta (t,\cdot )\Vert _{L^2(B_t)}\ll 1,\quad B_t:=\{x\in {\mathbb{R }}^3: |x|<t\} \end{aligned}$$ for all $t\gg 1$ . Furthermore, the kinetic energy of $u$ outside the cone is small. Consequently, depending on the sign of $\mu $ , we obtain two new types of solutions which either concentrate as $t\rightarrow \infty $ (with a continuum of rates) or stay bounded but do not scatter. In particular, these solutions contradict a strong version of the soliton resolution conjecture.  相似文献   

2.
For real ${L_\infty(\mathbb{R})}$ -functions ${\Phi}$ and ${\Psi}$ of compact support, we prove the norm resolvent convergence, as ${\varepsilon}$ and ${\nu}$ tend to 0, of a family ${S_{\varepsilon \nu}}$ of one-dimensional Schrödinger operators on the line of the form $$S_{\varepsilon \nu} = -\frac{d^2}{dx^2} + \frac{\alpha}{\varepsilon^2} \Phi \left( \frac{x}{\varepsilon} \right) + \frac{\beta}{\nu} \Psi \left(\frac{x}{\nu} \right),$$ provided the ratio ${\nu/\varepsilon}$ has a finite or infinite limit. The limit operator S 0 depends on the shape of ${\Phi}$ and ${\Psi}$ as well as on the limit of ratio ${\nu/\varepsilon}$ . If the potential ${\alpha\Phi}$ possesses a zero-energy resonance, then S 0 describes a non trivial point interaction at the origin. Otherwise S 0 is the direct sum of the Dirichlet half-line Schrödinger operators.  相似文献   

3.
4.
We generalize the second pinching theorem for minimal hypersurfaces in a sphere due to Peng–Terng, Wei–Xu, Zhang, and Ding–Xin to the case of hypersurfaces with small constant mean curvature. Let $M^n$ be a compact hypersurface with constant mean curvature $H$ in $S^{n+1}$ . Denote by $S$ the squared norm of the second fundamental form of $M$ . We prove that there exist two positive constants $\gamma (n)$ and $\delta (n)$ depending only on $n$ such that if $|H|\le \gamma (n)$ and $\beta (n,H)\le S\le \beta (n,H)+\delta (n)$ , then $S\equiv \beta (n,H)$ and $M$ is one of the following cases: (i) $S^{k}\Big (\sqrt{\frac{k}{n}}\Big )\times S^{n-k}\Big (\sqrt{\frac{n-k}{n}}\Big )$ , $\,1\le k\le n-1$ ; (ii) $S^{1}\Big (\frac{1}{\sqrt{1+\mu ^2}}\Big )\times S^{n-1}\Big (\frac{\mu }{\sqrt{1+\mu ^2}}\Big )$ . Here $\beta (n,H)=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)} \sqrt{n^2H^4+4(n-1)H^2}$ and $\mu =\frac{n|H|+\sqrt{n^2H^2+ 4(n-1)}}{2}$ .  相似文献   

5.
Let $\pi S(t)$ denote the argument of the Riemann zeta-function, $\zeta (s)$ , at the point $s=\frac{1}{2}+it$ . Assuming the Riemann hypothesis, we present two proofs of the bound $$\begin{aligned} |S(t)| \le \left(\frac{1}{4} + o(1) \right)\frac{\log t}{\log \log t} \end{aligned}$$ for large $t$ . This improves a result of Goldston and Gonek by a factor of 2. The first method consists of bounding the auxiliary function $S_1(t) = \int _0^{t} S(u) \> \text{ d}u$ using extremal functions constructed by Carneiro, Littmann and Vaaler. We then relate the size of $S(t)$ to the size of the functions $S_1(t\pm h)-S_1(t)$ when $h\asymp 1/\log \log t$ . The alternative approach bounds $S(t)$ directly, relying on the solution of the Beurling–Selberg extremal problem for the odd function $f(x) = \arctan \left(\frac{1}{x}\right) - \frac{x}{1 + x^2}$ . This draws upon recent work by Carneiro and Littmann.  相似文献   

6.
For a constant $\alpha \in (-\frac{\pi }{2},\frac{\pi }{2})$ and $0\!\le \!\rho \!<\!1,$ we define the set of all $\alpha $ -spiral-like functions of order $\rho $ consisting of functions $f$ that are univalent on the unit disk and satisfy the condition $ Re\left(e^{-i\alpha }\frac{zf^{\prime }(z)}{f(z)}\right)>\rho \cos \alpha $ for any point $z$ in the unit disk. In the present paper, we shall give the best estimate for the norm of the pre-Schwarzian derivative ${\text{ T}}_f(z)=f^{\prime \prime }(z)/f^{\prime }(z)$ where $||T_f||= \sup (1-|z|^2)|T_f(z)|$ .  相似文献   

7.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

8.
9.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

10.
We investigate spectral properties of operators of the form $$\begin{aligned} P_\mu f(z):=-\frac{1}{(1-z)^{\mu +1}}\int _1^z f(\zeta )(1-\zeta )^{\mu }\,d\zeta \end{aligned}$$ and $$\begin{aligned} Q_\mu f(z):=(1-z)^{\mu -1}\int _0^z f(\zeta )(1-\zeta )^{-\mu }\,d\zeta \quad (z\in \mathbb{D }) \end{aligned}$$ acting on the analytic Besov spaces $B_p$ and the little Bloch space $\mathcal B _0$ . For $X=B_p$ , $1\le p\le \infty $ , or $X=\mathcal B _0$ , we identify the spectra of $P_\mu $ and $Q_\mu $ in $\mathcal{L }(X)$ , as well as, in the case $X\ne B_\infty $ , the essential spectrum and index together with one sided analytic resolvents in the Fredholm regions of $P_\mu $ and $Q_\mu $ .  相似文献   

11.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

12.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

13.
14.
We consider the case of hyperbolic basic sets $\Lambda $ of saddle type for holomorphic maps $f:{\mathbb{P }}^2{\mathbb{C }}\rightarrow {\mathbb{P }}^2{\mathbb{C }}$ . We study equilibrium measures $\mu _\phi $ associated to a class of Hölder potentials $\phi $ on $\Lambda $ , and find the measures $\mu _\phi $ of iterates of arbitrary Bowen balls. Estimates for the pointwise dimension $\delta _{\mu _\phi }$ of $\mu _\phi $ that involve Lyapunov exponents and a correction term are found, and also a formula for the Hausdorff dimension of $\mu _\phi $ in the case when the preimage counting function is constant on $\Lambda $ . For terminal/minimal saddle sets we prove that an invariant measure $\nu $ obtained as a wedge product of two positive closed currents, is in fact the measure of maximal entropy for the restriction $f|_\Lambda $ . This allows then to obtain formulas for the measure $\nu $ of arbitrary balls, and to give a formula for the pointwise dimension and the Hausdorff dimension of $\nu $ .  相似文献   

15.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

16.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

17.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

18.
Let $A$ be a (possibly unbounded) self-adjoint operator on a separable Hilbert space $\mathfrak H .$ Assume that $\sigma $ is an isolated component of the spectrum of $A$ , that is, $\mathrm{dist}(\sigma ,\Sigma )=d>0$ where $\Sigma =\mathrm spec (A)\setminus \sigma .$ Suppose that $V$ is a bounded self-adjoint operator on $\mathfrak H $ such that $\Vert V\Vert <d/2$ and let $L=A+V$ , $\mathrm{Dom }(L)=\mathrm{Dom }(A).$ Denote by $P$ the spectral projection of $A$ associated with the spectral set $\sigma $ and let $Q$ be the spectral projection of $L$ corresponding to the closed $\Vert V\Vert $ -neighborhood of $\sigma .$ Introducing the sequence $$\begin{aligned} \varkappa _n=\frac{1}{2}\left(1-\frac{(\pi ^2-4)^n}{(\pi ^2+4)^n}\right), \quad n\in \{0\}\cup {\mathbb N }, \end{aligned}$$ we prove that the following bound holds: $$\begin{aligned} \arcsin (\Vert P-Q\Vert )\le M_\star \left(\frac{\Vert V\Vert }{d}\right), \end{aligned}$$ where the estimating function $M_\star (x)$ , $x\in \bigl [0,\frac{1}{2}\bigr )$ , is given by $$\begin{aligned} M_\star (x)=\frac{1}{2}\,\,n_{_\#}(x)\,\arcsin \left(\frac{4\pi }{\pi ^2+4}\right) +\frac{1}{2}\,\arcsin \left(\frac{\pi ( x-\varkappa _{n_{_\#}(x)})}{1-2\varkappa _{n_{_\#}(x)})}\right), \end{aligned}$$ with $n_{_\#}(x)=\max \left\{ n\,\bigr |\,\,n\in \{0\}\cup {\mathbb N }\,, \varkappa _n\le x\right\} $ . The bound obtained is essentially stronger than the previously known estimates for $\Vert P-Q\Vert .$ Furthermore, this bound ensures that $\Vert P-Q\Vert <1$ and, thus, that the spectral subspaces $\mathrm{Ran }(P)$ and $\mathrm{Ran }(Q)$ are in the acute-angle case whenever $\Vert V\Vert <c_\star \,d$ , where $$\begin{aligned} c_\star =16\,\,\frac{\pi ^6-2\pi ^4+32\pi ^2-32}{(\pi ^2+4)^4}=0.454169\ldots . \end{aligned}$$ Our proof of the above results is based on using the triangle inequality for the maximal angle between subspaces and on employing the a priori generic $\sin 2\theta $ estimate for the variation of a spectral subspace. As an example, the boundedly perturbed quantum harmonic oscillator is discussed.  相似文献   

19.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

20.
Let ${(\phi, \psi)}$ be an (m, n)-valued pair of maps ${\phi, \psi : X \multimap Y}$ , where ${\phi}$ is an m-valued map and ${\psi}$ is n-valued, on connected finite polyhedra. A point ${x \in X}$ is a coincidence point of ${\phi}$ and ${\psi}$ if ${\phi(x) \cap \psi(x) \neq \emptyset}$ . We define a Nielsen coincidence number ${N(\phi : \psi)}$ which is a lower bound for the number of coincidence points of all (m, n)-valued pairs of maps homotopic to ${(\phi, \psi)}$ . We calculate ${N(\phi : \psi)}$ for all (m, n)-valued pairs of maps of the circle and show that ${N(\phi : \psi)}$ is a sharp lower bound in that setting. Specifically, if ${\phi}$ is of degree a and ${\psi}$ of degree b, then ${N(\phi : \psi) = \frac{|an - bm|}{\langle m, n \rangle}}$ , where ${\langle m, n \rangle}$ is the greatest common divisor of m and n. In order to carry out the calculation, we obtain results, of independent interest, for n-valued maps of compact connected Lie groups that relate the Nielsen fixed point number of Helga Schirmer to the Nielsen root number of Michael Brown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号