首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The superposition states of two qubits including entangled Bell states are considered in the probability representation of quantum mechanics. The superposition principle formulated in terms of the nonlinear addition rule of the state density matrices is formulated as a nonlinear addition rule of the probability distributions describing the qubit states. The generalization of the entanglement properties to the case of superposition of two-mode oscillator states is discussed using the probability representation of quantum states.  相似文献   

2.
Symplectic and optical joint probability representations of quantum mechanics are considered, in which the functions describing the states are the probability distributions with all random arguments (except the argument of time). The general formalism of quantizers and dequantizers determining the star product quantization scheme in these representations is given. Taking the Gaussian functions as the distributions of the tomographic parameters the correspondence rules for most interesting physical operators are found and the expressions of the dual symbols of operators in the form of singular and regular generalized functions are derived. Evolution equations and stationary states equations for symplectic and optical joint probability distributions are obtained.  相似文献   

3.
The review of new formulation of conventional quantum mechanics where the quantum states are identified with probability distributions is presented. The invertible map of density operators and wave functions onto the probability distributions describing the quantum states in quantum mechanics is constructed both for systems with continuous variables and systems with discrete variables by using the Born’s rule and recently suggested method of dequantizer–quantizer operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms), harmonic oscillator and free particle are studied in detail. Schrödinger and von Neumann equations, as well as equations for the evolution of open systems, are written in the form of linear classical–like equations for the probability distributions determining the quantum system states. Relations to phase–space representation of quantum states (Wigner functions) with quantum tomography and classical mechanics are elucidated.  相似文献   

4.
We introduce the probability distributions describing quantum observables in conventional quantum mechanics and clarify their relations to the tomographic probability distributions describing quantum states. We derive the evolution equation for quantum observables (Heisenberg equation) in the probability representation and give examples of the spin-1/2 (qubit) states and the spin observables. We present quantum channels for qubits in the probability representation.  相似文献   

5.
Journal of Russian Laser Research - The states of quantum oscillator with time-dependent frequency are described by the tomographic probability distributions. The integrals of motion, being linear...  相似文献   

6.
We consider the remote implementation of an arbitrary unitary operation on one qubit of a pure two-qubit entangled state with 100% efficiency via entanglement swapping in detail, then directly generalize this protocol from two-qubit to N-qubit entangled states. The overall classical information and distributed entanglement cost required for this quantum remote control protocol is less than the bi-directional quantum state teleportation method.  相似文献   

7.
Journal of Russian Laser Research - We construct Gaussian coherent states of a free particle with time-dependent mass, using symplectic tomographic probability distribution and integrals of motion...  相似文献   

8.
The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.  相似文献   

9.
An extension of the Born rule, the quantum typicality rule, has recently been proposed [B. Galvan in Found. Phys. 37:1540–1562 (2007)]. Roughly speaking, this rule states that if the wave function of a particle is split into non-overlapping wave packets, the particle stays approximately inside the support of one of the wave packets, without jumping to the others. In this paper a formal definition of this rule is given in terms of imprecise probability. An imprecise probability space is a measurable space endowed with a set of probability measures ℘. The quantum formalism and the quantum typicality rule allow us to define a set of probabilities on (X T ,ℱ), where X is the configuration space of a quantum system, T is a time interval and ℱ is the σ-algebra generated by the cylinder sets. Thus, it is proposed that a quantum system can be represented as the imprecise stochastic process , which is a canonical stochastic process in which the single probability measure is replaced by a set of measures. It is argued that this mathematical model, when used to represent macroscopic systems, has sufficient predictive power to explain both the results of the statistical experiments and the quasi-classical structure of the macroscopic evolution.  相似文献   

10.
The Green's function and linear integrals of motion for a charged particle moving in an electric field are discussed. The Wigner functions and tomograms of the stationary states of the charged particle are obtained. The relationship between the quantum propagators for the Schrödinger evolution equation, the Moyal evolution equation, and the evolution equation in the tomographic-probability representation for a charged particle moving in an electric field is discussed.  相似文献   

11.
12.
We construct the quantum density matrix of a spin-1/2 state for three given probability distributions describing positions of three classical coins and associate its matrix elements with the Triada of Malevich’s squares. We present the superposition principle of spin-1/2 states in the form of a nonlinear addition rule for these classical coin probabilities. We illustrate the obtained formulas by the statement “God does not play dice – God plays coins.”  相似文献   

13.
bstractA circular superconductor with a weak-link junction is considered in the presence of a dc voltage bias. Using a time-dependent perturbed method, we obtain a unitary evolution operator of the driven SQUID system. We investigate the step structure of the screening current in the system and show that, due to the Josephson nonlinear term, the Aux and charge can exhibit reduced quantum fluctuation behavior.  相似文献   

14.
15.
The probability distribution describing quantum states of the damped oscillator in the framework of the Caldirola-Kanai model is introduced. The probability distributions for coherent states and Fock states of the damped oscillator are found explicitly. The transition probability for the damped oscillator is expressed in terms of distributions describing initial and final states.  相似文献   

16.
Probability representation of classical states described by symplectic tomograms is discussed. Tomographic symbols of classical observables which are functions on phase-space are studied. Explicit form of kernel of commutative star-product of the tomographic symbols is obtained.  相似文献   

17.
We consider the evolution of qubit states for the Demkov problem in the presence of dephasing processes in the spin tomographic-probability representation. We present an explicit solution of the spin tomogram in terms of the 1 F 2 hypergeometric function. We calculate the tomographic Shannon and q entropies through the solution of the master equation in the form of tomographic-probability distribution of the qubit states obtained.  相似文献   

18.
Journal of Russian Laser Research - We formulate the superposition principle of two states of qubit as a nonlinear addition rule of mean values of spin projections onto three perpendicular...  相似文献   

19.

The geometry of the structure of entanglement and discord for Bell-diagonal states is depicted by Lang and Caves (Phys. Rev. Lett. 105, 150501, 2010). In this paper, we investigate the geometry with respect to several distance-based quantifiers of coherence for Bell-diagonal states. We find that as both l1 norm and relative entropy of coherence vary continuously from zero to one, their related geometric surfaces move from the region of separable states to the region of entangled states, a fact illustrating intuitively that quantum states with nonzero coherence can be used for entanglement creation. We find the necessary and sufficient conditions that quantum discord of Bell-diagonal states equals to its relative entropy of coherence, and depict the surfaces related to the equality. We give surfaces of relative entropy of coherence for X states. We show the surfaces of dynamics of relative entropy of coherence for Bell-diagonal states under local nondissipative channels and find that all coherences under local nondissipative channels decrease.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号