首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green’s function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.  相似文献   

2.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

3.
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov–Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin–orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin–orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin–orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.  相似文献   

4.
Yi-Ming Liu 《中国物理 B》2022,31(9):97201-097201
We theoretically study thermoelectric transport properties through a triangular triple-quantum-dot (TTQD) structure in the linear response regime using the hierarchical equations of motion approach. It is demonstrated that large Seebeck coefficient can be obtained when properly matching the interdot tunneling strength and magnetic flux at the electron-hole symmetry point, as a result of spin chiral interactions in the TTQD system. We present a systematic investigation of the thermopower (the Seebeck coefficient) dependence on the tunneling strength, magnetic flux, and on-site energy. The Seebeck coefficient shows a clear breakdown of electron-hole symmetry in the vicinity of the Kondo regime, accompanied by the deviation from the semiclassical Mott relation in the Kondo and mixed-valence regimes, which result from the many-body effects of the Kondo correlated induced resonance together with spin chiral interactions.  相似文献   

5.
徐卫平  张玉颖  王强  聂一行 《中国物理 B》2016,25(11):117307-117307
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spinorbital interaction(RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green's function method in the linear response regime.Under the appropriate configuration of magnetic flux phase and RSOI phase,the spin figure of merit can be enhanced and is even larger than the charge figure of merit.In particular,the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs.For some specific configuration of the two phases,the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero,which is useful in realizing the thermal spin battery and inducing a pure spin current in the device.  相似文献   

6.
We theoretically study thermoelectric properties of a coupled double quantum dot (DQD) system coupled to normal leads using two impurity Anderson model with intra- as well as interdot Coulomb interactions. A generic formulation, which was earlier developed to study electronic properties (zero bias maximum of differential conductance and interesting partial swapping in Fano phenomena) of DQD system within Coulomb blockade regime for a non-magnetic case, is extended to investigate thermoelectric properties i.e. electrical conductance, thermoelectric power and thermal conductance of the same system, as a function of temperature by varying interdot Coulomb interaction and interdot tunneling. Interdot Coulomb interaction is found to trigger some novel features like crossover in thermoelectric power with temperature in all the configurations (series, parallel and T-shape) and a small peak in thermal conductance toward low temperatures, TΓ/10, in series and T-shape configurations, which is found to be missing in case of symmetric parallel configuration. The origin of these novel features is attributed to the interplay of renormalization of energy levels caused by the interdot Coulomb interaction which is interpreted in terms of local density of states and the asymmetry effects related to dot-lead couplings/interference effects.  相似文献   

7.
郑军  李春雷  杨曦  郭永 《物理学报》2017,66(9):97302-097302
基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.  相似文献   

8.
We study the spin-dependent electron transport through parallel coupled quantum dots (QDs) embedded in an Aharonov-Bohm (AB) interferometer connected asymmetrically to leads. Both the Rashba spin-orbit interaction (RSOI) inside one of the QDs, which acquires a spin-dependent phase factor in the tunnel-coupling strengths when the electrons flow through this arm of the AB ring, and an inhomogeneous magnetic flux penetrating the structure are taken into account. Due to the existence of the RSOI induced phase factor, magnetic flux and the interdot coupling, a spin-dependent Fano effect will arise. We pay special attention on the properties of the local density of states and the conductance when the electron phase factor is close to integer multiplies of a quantum of flux. It is shown that the roles and lifetimes of the bonding and antibonding states of the two spin components are very sensitive to the phase factor and can be well controlled accordingly. This manipulation of the spin degree of freedom relies on the existence of RSOI but can be fulfilled even when its strength is very weak. The proposed structure can be easily realized with present technology and might be of practical applications in spintronics devices and quantum computing.  相似文献   

9.
We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent interdot quantum couplings are probed optically by adding a single electron-hole pair and detecting the emission from negatively charged exciton states. Coulomb- and Pauli-blockade effects are directly observed, and tunnel coupling and electrostatic charging energies are independently measured. The interdot quantum coupling is shown to be mediated by electron tunneling. Our results are in excellent accord with calculations that provide a complete picture of negative excitons and few-electron states in quantum dot molecules.  相似文献   

10.
陈晓彬  段文晖 《物理学报》2015,64(18):186302-186302
低维材料不断涌现的新奇性质吸引着科学研究者的目光. 除了电子的量子输运行为之外, 人们也陆续发现和确认了热输运中显著的量子行为, 如 热导低温量子化、声子子带、尺寸效应、瓶颈效应等. 这些小尺度体系的热输运性质可以很好地用非平衡格林函数来描述. 本文首先介绍了量子热输运的特性、声子非平衡格林函数方法及其在低维纳米材料中的研究进展; 其次回顾了近年来在 一系列低维材料中发现的热-自旋输运现象. 这些自旋热学现象展现了全新的热电转换机制, 有助于设计新型的热电转换器件, 同时也给出了用热产生自旋流的新途径; 最后介绍了线性响应理论以及在此理论框架下结合声子、电子非平衡格林函数方法进行的一些有益的探索. 量子热输运的研究对热效应基础研究以及声子学器件、能量转换器件的发展有着不可替代的重要作用.  相似文献   

11.
Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.  相似文献   

12.
In general, the proton NMR spectra of chiral molecules aligned in the chiral liquid crystalline media are broad and featureless. The analyses of such intricate NMR spectra and their routine use for spectral discrimination of R and S optical enantiomers are hindered. A method is developed in the present study which involves spin state selective two dimensional correlation of higher quantum coherence to its single quantum coherence of a chemically isolated group of coupled protons. This enables the spin state selective detection of proton single quantum transitions based on the spin states of the passive nuclei. The technique provides the relative signs and magnitudes of the couplings by overcoming the problems of enantiomer discrimination, spectral complexity and poor resolution, permitting the complete analyses of the otherwise broad and featureless spectra. A non-selective 180 degrees pulse in the middle of MQ dimension retains all the remote passive couplings. This accompanied by spin selective MQ-SQ conversion leads to spin state selective coherence transfer. The removal of field inhomogeneity contributes to dramatically enhanced resolution. The difference in the cumulative additive values of chemical shift anisotropies and the passive couplings, between the enantiomers, achieved by detecting Nth quantum coherence of N magnetically equivalent spins provides enhanced separation of enantiomer peaks. The developed methodology has been demonstrated on four different chiral molecules with varied number of interacting spins, each having a chiral centre.  相似文献   

13.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are aligned. As a consequence, the direction of the spin conductance can be controlled and even reversed using electrostatic gates alone. Our results demonstrate a new approach for controlling spin-dependent transport in carbon nanotube double dot devices.  相似文献   

14.
A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser-spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging.  相似文献   

15.
Using the nonequilibrium Green’s function method combined with the tight-binding Hamiltonian, we theoretically investigate the spin-dependent transmission probability and spin Seebeck coefficient of a crossed armchair-edge graphene nanoribbon (AGNR) superlattice p-n junction under a perpendicular magnetic field with a ferromagnetic insulator, where junction widths W1 of 40 and 41 are considered to exemplify the effect of semiconducting and metallic AGNRs, respectively. A pristine AGNR system is metallic when the transverse layer m = 3j + 2 with a positive integer j and an insulator otherwise. When stubs are present, a semiconducting AGNR junction with width W1 = 40 always shows metallic behavior regardless of the potential drop magnitude, magnetization strength, stub length, and perpendicular magnetic field strength. However, metallic or semiconducting behavior can be obtained from a metallic AGNR junction with W1 = 41 by adjusting these physical parameters. Furthermore, a metal-to-semiconductor transition can be obtained for both superlattice p-n junctions by adjusting the number of periods of the superlattice. In addition, the spin-dependent Seebeck coefficient and spin Seebeck coefficient of the two systems are of the same order of magnitude owing to the appearance of a transmission gap, and the maximum absolute value of the spin Seebeck coefficient reaches 370 µV/K when the optimized parameters are used. The calculated results offer new possibilities for designing electronic or heat-spintronic nanodevices based on the graphene superlattice p-n junction.  相似文献   

16.
An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.  相似文献   

17.
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resonance and Fang interference coexist, and in this system the Fang Kondo effect shows dip behaviours richer than that in the T-shaped QDs. The interdot coupling, the energy level of the side coupled QDs and the spin polarization strength greatly influence the DOS of the central quantum dot QDo. Either the increase of the coupling strength between the two QDs or that of the energy levels of the side coupled QDs enhances the Kondo resonance. Especially, the Kondo resonance is strengthened greatly when the side dot energy is fixed at the Fermi energy. Meanwhile, the Kondo resonance splits for the spin-up and spin-down configurations due to the polarization: the down-spin resonance is enhanced, and the up-spin resonance is suppressed.  相似文献   

18.
《Physics letters. A》2014,378(26-27):1854-1866
We investigate the spin-dependent thermoelectric effect of a Rashba molecular quantum dot coupled with both ferromagnetic leads and a phonon bath in the Kondo regime. A transport formula is derived to deal with the strong electron–electron and electron–phonon interaction with the spin–orbit coupling of arbitrary intensity simultaneously. The numerical results show that only strengthening the electron–phonon coupling can improve the charge thermopower, while even very small spin–orbit coupling can suppress both the thermocharge figure of merit and the thermospin one at the Kondo temperature greatly. It is also found that the electron–phonon coupling in conjunction with the spin–orbit coupling can rebuild Fermi liquid state in the Kondo regime.  相似文献   

19.
The effect of gallium on the temperature dependences (5 K ≤ T ≤ 300 K) of Seebeck coefficient α, electrical conductivity σ, thermal conductivity k, and thermoelectric efficiency Z of mixed p-(Bi0.5Sb0.5)2Te3 semiconductor single crystals is studied. The hole concentration decreases upon gallium doping; that is, gallium causes a donor effect. The Seebeck coefficient increases anomalously, i.e., much higher than it should be at the detected decrease in the hole concentration. This leads to an enhancement of the thermoelectric power. The observed changes in the Seebeck coefficient indicate a noticeable gallium-induced change in the density of states in the valence band.  相似文献   

20.
We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third harmonic voltage response nonlocally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both the Seebeck coefficient and resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号