首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Graphite electrodes were modified with triangular (AuNTrs) or spherical (AuNPs) nanoparticles and further modified with fructose dehydrogenase (FDH). The present study reports the effect of the shape of these nanoparticles (NPs) on the catalytic current of immobilized FDH pointing out the different contributions on the mass transfer–limited and kinetically limited currents. The influence of the shape of the NPs on the mass transfer–limited and the kinetically limited current has been proved by using two different methods: a rotating disk electrode (RDE) and an electrode mounted in a wall jet flow-through electrochemical cell attached to a flow system. The advantages of using the wall jet flow system compared with the RDE system for kinetic investigations are as follows: no need to account for substrate consumption, especially in the case of desorption of enzyme, and studies of product-inhibited enzymes. The comparison reveals that virtually identical results can be obtained using either of the two techniques. The heterogeneous electron transfer (ET) rate constants (kS) were found to be 3.8 ± 0.3 s−1 and 0.9 ± 0.1 s−1, for triangular and spherical NPs, respectively. The improvement observed for the electrode modified with AuNTrs suggests a more effective enzyme-NP interaction, which can allocate a higher number of enzyme molecules on the electrode surface.

The shape of gold nanoparticles has a crucial effect on the catalytic current related to the oxidation of D-(-)-fructose to 5-keto-D-(-)-fructose occurring at the FDH-modified electrode surface. In particular, AuNTrs have a higher effect compared with the spherical one.

  相似文献   

2.

Starting from simple graphite flakes, an electrochemical sensor for sunset yellow monitoring is developed by using a very simple and effective strategy. The direct electrochemical reduction of a suspension of exfoliated graphene oxide (GO) onto a glassy carbon electrode (GCE) surface leads to the electrodeposition of electrochemically reduced oxide at the surface, obtaining GCE/ERGO-modified electrodes. They are characterized by cyclic voltammetry (CV) measurements and field emission scanning electron spectroscopy (FE-SEM). The GCE/ERGO electrode has a high electrochemically active surface allowing efficient adsorption of SY. Using differential pulse voltammetry (DPV) technique with only 2 min accumulation, the GCE/ERGO sensor exhibits good performance to SY detection with a good linear calibration for concentration range varying 50–1000 nM (R2 = 0.996) and limit of detection (LOD) estimated to 19.2 nM (equivalent to 8.9 μg L−1). The developed sensor possesses a very high sensitivity of 9 μA/μM while fabricated with only one component. This electrochemical sensor also displays a good reliability with RSD value of 2.13% (n = 7) and excellent reusability (signal response change < 3.5% after 6 measuring/cleaning cycles). The GCE/ERGO demonstrates a successful practical application for determination of sunset yellow in commercial soft drinks.

Graphical abstract

  相似文献   

3.
Wei  Liping  Tian  Yi  Yan  Wenrong  Cheung  Kawai  Ho  Derek 《Analytical and bioanalytical chemistry》2019,411(16):3641-3652

Liquid-core waveguide (LCW) has many advantages such as the elimination of optical artifacts typically exhibited in systems employing lenses and filters. However, due to the effect of temporal dispersion, LCWs are typically employed in steady-state fluorescence detection microsystems rather than in fluorescence lifetime measurement (FLM) systems. In this paper, we present a compact liquid-core waveguide time-correlated single-photon counting (LCW-TCSPC) sensor for FLM. The propagation of excitation within the LCW is analyzed both analytically and in simulations, with results in agreement with experimental characterization. Results reveal an optimal region within the LCW for highly accurate FLM. The proposed prototype achieves excellent excitation rejection and low temporal dispersion as a result of optimization of the propagation length of the excitation within the LCW. The prototype achieves a detection limit of 5 nM for Coumarin 6 in dimethyl sulfoxide with < 3% lifetime error. The techniques proposed for analyzing the LCW for TCSPC based FLM and prototype demonstration pave the way for developing high-performance fluorescence lifetime measurement for microfluidics and point-of-care applications.

A compact liquid-core waveguide time-correlated single-photon counting (LCW-TCSPC) sensor for fluorescence lifetime measurement (FLM) is presented. Results reveal an optimal propagation length region within the LCW for highly accurate FLM. The prototype achieves a detection limit of 5 nM for Coumarin 6 in dimethyl sulfoxide with < 3% lifetime error.

  相似文献   

4.

One of the main challenges in large-scale applications of molecularly imprinted polymers (MIPs) is the significant amount of template needed in polymer preparation. A new strategy based on room-temperature ionic liquids (RTILs) was suggested to solve this problem by reducing the amount of template in the polymerization recipe. The MIP was synthesized with a mixture of dimethyl sulfoxide and RTIL (1-butyl-3-methylimidazolium tetrafluoroborate) as porogen, in which chlorogenic acid (CGA) was used as template, 4-vinylpyridine (4-VP) as functional monomer, and ethylene glycol dimethacrylate (EDMA) as cross-linker. The influence of polymerization variables, including CGA concentrations, and the ratio of 4-VP to EDMA on imprinting effect were investigated comprehensively. Moreover, the properties involving the column permeability, the number of binding sites, and the polymer morphology of the CGA-MIP monoliths were studied thoroughly. The MIP monolith had an excellent column permeability (1.53 × 10−13 m2) and allowed an ultra-fast on-line SPE, which dramatically shortens the separation time (< 10 min) and improves the separation efficiency. At high flow velocity (5.0 mL min−1), 50 μL of the extract from Eucommia ulmoides leaves can be loaded directly on the CGA-MIP monoliths and CGA with high purity can be obtained with a recovery of 89.01 ± 0.05%. As a conclusion, the resulting RTIL-induced approach of preparing MIP may be an effective tool in fabricating MIP in a low-cost way.

  相似文献   

5.

The triethylamine-based nanomagnetic ionic liquid, [(Et)3 N-H]FeCl4, was synthesized, and its structural and chemical characteristics were detected. The thermogravimetric analysis indicated its high thermal stability with a decomposition temperature higher than 300 °C. Additionally, [(Et)3 N-H]FeCl4 was used to efficiently catalyze the synthesis of xanthene derivatives under solvent-free conditions at 120 °C. [(Et)3 N-H]FeCl4 was recycled and reused at least five times.

Graphical abstract
  相似文献   

6.

A novel SBA-15-based fluorescent sensor, SBA-PI: mesoporous SBA-15 structure modified with iminostilbene groups, was designed, synthesized, and characterized by Fourier transform-infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), low-angle X-ray diffraction techniques (low-angle XRD), and N2 adsorption–desorption techniques. The SBA-PI as a sensor with a selective behavior for detection of Cu2+ comprises iminostilbene carbonyl as the fluorophore group. The SBA-PI sensor displays an excellent fluorescence response in aqueous solutions and the fluorescence intensity quenches remarkably upon addition of Cu2+. Other common interfering ions even at high concentration ratio showed either no or very small changes in the fluorescence intensity of SBA-PI in the absence of Cu2+. A limit of detection of 8.7 × 10−9 M for Cu2+ indicated that this fluorescence sensor has a high sensitivity and selectivity toward the target copper (II) ion. The fabricated Cu2+ sensor was successfully applied for the determination of the Cu2+ in human blood samples without any significant interference. With the selective analysis of Cu2+ ions down to 0.9 nM in blood, the sensor is a promising and a novel detection candidate for Cu2+ and can be applied in the clinical laboratory. A reversibility and accuracy in the fluorescence behavior of the sensor was found in the presence of I¯ that was described as a masking agent for Cu2+.

Graphical abstract

  相似文献   

7.

A facile green synthesis of platinum nanoparticles (PtNPs) using chlorogenic acid (CGA) as a reducing agent and stabilizing agent has been reported here for the first time to the knowledge of the authors. Well-dispersed PtNPs are synthesized in spherical shapes and are tuned in size by simply changing the molar ratio of H2PtCl6 to CGA, with the same salt, temperature and solvent. The average sizes of the particles were 16.9 ± 4.7, 13.3 ± 4.0, 10.8 ± 3.4, and 7.5 ± 2.3 nm, respectively, corresponding to molar ratios of the initial H2PtCl6/CGA of 1:1, 1:2, 1:3 and 1:4 and decreased with an increase in CGA concentration. Transmission electron microscope; energy-dispersive spectrometer; UV–visible absorption spectra (UV–Vis); and Fourier transmission infrared spectra were used to characterize the PtNPs. Additionally, the advantage of CGA for possible synergistic biological activity was studied through the in vitro antioxidant activity of PtNPs by CGA for capture of free radicals. Our results indicate that CGA is an excellent reducing and stabilizing agent in green synthesis of PtNPs, and these size-tunable PtNPs can provide potential applications in the field of biomedicines.

Graphic abstract
  相似文献   

8.

In this work, Cu-Zn-Sn (CZT) is co-electrodeposited onto a flexible Mo substrate exploiting an alkaline bath (pH 10). The plating solution is studied by cyclic voltammetry, highlighting the effects of potassium pyrophosphate (K4P2O7) and EDTA-Na2 on the electrochemical behavior and stability of the metallic ionic species. The optimized synthesis results in a homogeneous precursor layer, with composition Cu 44 ± 2 at. %, Zn 28 ± 1 at. %, and Sn 28 ± 2 at. %. Soft and reactive annealing are employed respectively to promote intermetallic phase formation and sulfurization of the precursor to obtain CZTS. Microstructural (XRD, Raman), morphological (SEM), and compositional (EDX, XRF) characterization is carried out on CZT and CZTS films, showing a minor presence of secondary phases. Finally, photo-assisted water splitting tests are performed considering a CZTS/CdS/Pt photoelectrode, showing a photocurrent density of 1.01 mA cm−2 at 0 V vs. RHE under 1 sun illumination.

Graphical abstract
  相似文献   

9.

It has recently been established that 1-octanethiol in the electrolyte can allow iron electrodes to be discharged at higher rates. However, the effect of thiol additives on the air electrode has not yet been studied. The effect of solvated thiols on the surface positive electrode reaction is of prime importance if these are to be used in an iron-air battery. This work shows that the air-electrode catalyst is poisoned by the presence of octanethiol, with the oxygen reduction overpotential at the air electrode increasing with time of exposure to the solution and increased 1-octanethiol concentration in the range 0–0.1 mol dm−3. Post-mortem XPS analyses were performed over the used air electrodes suggesting the adsorption of sulphur species over the catalyst surface, reducing its performance. Therefore, although sulphur-based additives may be suitable for nickel-iron batteries, they are not recommended for iron-air batteries except in concentrations well below 10 × 10−3 mol dm−3.

Graphical abstract

  相似文献   

10.

A new conductive terpolymer/graphene nanosheet hybrid composite has been synthesized by polymerizing pyrrole, chlorobenzaldehyde, and heptaldehyde (PPyCB&;H), in the presence of graphene nanosheets (GNS), using p-toluene sulfonic acid as a catalyst. Fourier transform infrared spectra, proton nuclear magnetic resonance, transmission electron microscopy, and X-ray diffraction patterns confirm the formation of PPyCB&;H/GNS hybrid nanocomposites. Further, the resultant nanocomposite material is coated on ITO to construct an electrochemical sensor for the reliable detection of single-strand DNA (tDNA) which is cleaved from the genomic DNA of Escherichia coli. Under optimized conditions, linear detection of genomic DNA (tDNA) with concentration ranging from 1.3 × 10−12 to 1.3 × 10−23 M is observed and it is repeatable with a 1.3 × 10−23 M lowest level detection limit. The present modified electrode of PPyCB&;H/GNS may show utility for constructing highly sensitive electrochemical sensors for the detection of E. coli.

Graphical abstract
  相似文献   

11.

We demonstrate a new pathway for the synthesis of carbon nanohorns (CNHs) in a reactor by using inductively coupled plasma (ICP) and gaseous precursors. Thermal plasma synthesis allows the formation of different carbon allotropes such as carbon nanoflakes, hybrid forms of flakes and nanotubules, CNHs embryos, seed-like CNHs and onion-like polyhedral graphitic nanocapsules. In this study, pressure has the greatest impact on the selectivity of carbon nanostructures: pressure below 53.3 kPa favors the growth of carbon nanoflakes and higher pressures, 66.7 kPa and above, promotes the formation of CNHs. The ratio between methane and hydrogen as well as the global concentration of CH4?+?H2 inside the plasma flame are also crucial to the reaction. CNHs are formed preferentially by injection of a 1:2 ratio of H2 to CH4 at 82.7 kPa with a production rate of 20 g/h. The synthesis pathway is easily scalable and could be made continuous, which offers an interesting alternative compared to methods based on laser-, arc- or induction-based vaporization of graphite rods.

Graphical Abstract
  相似文献   

12.

N-Methylpyrrolidine catalyzed, concise and attractive synthesis of a new class of 3-hydroxy-3,5/6-di-aryl-1H-imidazo[1,2-a]imidazol-2(3H)-ones was attained with impressive yields, in the presence of EtOH as a solvent, by means of a convenient and elegant condensation reaction between different aryl glyoxal monohydrates and guanidine hydrochloride under reflux conditions. Some specific merits of the current procedure, including encompasses low operating cost, availability of the starting substrates, reasonable reaction times, high reaction yield, operational simplicity, cleaner reaction profile, no harmful by-products, and the isolated product is in pure form. Structures of all the freshly synthesized products have been deduced by their FT-IR, 1H-NMR, 13C-NMR, Mass spectrometry data and microanalysis.

Graphical abstract
  相似文献   

13.

An electrochemical cycle for the grid energy storage in the redox potential of Fe involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial to maximize the energy efficiency of the electrolysis process. Here we present a study of the influence of electrolysis parameters on the energy efficiency of such electrolysis, performed in an industrial-type electrolyzer. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency. The deviation from the correlation indicated an important contribution from the conductivity of the ion-exchange membrane. Another important studied parameter was the applied current density. We quantitatively showed how the contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ± 3% was achieved using 2.5 mol L−1 FeCl2 solution at 70 °C and a current density of 0.1 kA m−2. In terms of the energy input per Fe mass, this means 1.88 Wh g−1. The limiting energy input per mass of the Fe deposit was found to be 1.76 Wh g−1.

Graphical abstract
  相似文献   

14.

Aluminum sacrificial anodes are currently the first choice for cathodic protection in numerous applications. The galvanic performance of aluminum-based sacrificial anodes is considerably enhanced by addition of certain alloying elements called activators. Recent researches proved that incorporation of specific metal oxides like MnO2, CeO2, RuO2, and IrO2 into the aluminum matrix could enhance the galvanic efficiency of aluminum anodes; however, the mechanism by which metal oxides improve galvanic properties of aluminum is still subject to discussion. The present work investigates the effect of incorporating commercially available low-cost manganese dioxide concentrate into Al-5Zn-0.1Sn sacrificial anodes in different volume fractions. It also studies the influence of heat treatment on anode’s galvanic performance by performing solution treatment at 3 different temperatures (250 °C, 400 °C, 550 °C). The electrochemical testing results proved an increase in efficiency of anodes incorporated with metal oxides and solution treated at 550 °C. The SEM imaging and EDX elemental mapping declared that the presence of SiO2 particles in the anode matrix which might cause effective and uniform corrosion of Al anodes and decreased non-coulombic losses.

Graphical abstract
  相似文献   

15.
He  Yu  Wang  Shuo  Wang  Junping 《Analytical and bioanalytical chemistry》2019,411(28):7481-7487

Folic acid (FA) is an essential vitamin in humans, and thus, rapid, accurate, and sensitive methods for its quantification in different biological samples are needed. This work describes a novel, simple, and effective dual-emission fluorescence nanoprobe for FA detection and quantification. The probe was covalently linked to amino-modified orange quantum dots (QDs) and carboxyl-modified blue graphene quantum dots (GQDs). The resulting material exhibited two emission peaks at 401 and 605 nm upon excitation at 310 nm. The probe had good selectivity and sensitivity toward FA with an exceptionally low detection limit (LOD = 0.09 nM). This probe was effectively used to quantify FA in animal serum samples. The method has potential utility for FA analysis in different types of biological samples.

Graphical abstract

  相似文献   

16.

Qternmet XR® (FDA approval, May 2019) is a multitarget anti-diabetic drug combination composed of metformin (MET), saxagliptin (SAX) and dapagliflozin (DAP). To our present knowledge, no analytical reports were found in the scientific databases for the simultaneous quantification of MET, SAX and DAP in their ternary combined tablets, moreover, no articles have attempted the simultaneous estimation of the cited drugs in any matrix using high-performance liquid chromatography with diode-array detection (HPLC–DAD) or high-performance thin-layer chromatography (HPTLC) technique. The current work represents a comparative study on two developed and validated chromatographic methods for the simultaneous determination of the ternary mixture (MET, SAX and DAP) in pure form and in combined tablet dosage form. The first method is reversed-phase HPLC using Agilent C18 column (4.6 × 250 mm, 5 μm p.s.) with a mobile phase consisting of acetonitrile and acidic aqueous phase pH 3 with a photodiode array detection at 230 nm. The second method is HPTLC in which drug solutions were applied to Merck HPTLC silica gel plates developed with a mixture of chloroform:methanol:water:acetic acid (7.4:2.6:0.5:0.01, v/v) and scanned at 224 nm. Both methods were fully validated following the ICH guidelines in terms of linearity, accuracy, precision, selectivity and robustness.

Representative HPLC (a) and HPTLC (b) chromatograms for a ternary mixture of metformin (MET), saxagliptin (SAX) and dapagliflozin (DAP)

  相似文献   

17.

TiO2 nanorods (NRs) have been successfully synthesized via simple hydrothermal technique utilizing TiCl4 as precursor at varied temperature of 160 °C, 200 °C and 250 °C, respectively. Further, thermal treatment was done in the close system at calcinations temperature thrice of the synthesis temperature. The prepared NRs were well characterized for the various physio-chemical natures of the materials. Crystallographic and morphological investigations showed that the samples exhibited high crystallinity with diameter ranges from 300 to 400 nm and length in several micrometers. XPS analysis proved the existence of oxygen defects that were created during the synthesis. The solar photocatalysis showed 81.27%, 92.20% and 58.79% removal of color by NR1, NR2 and NR3, respectively, within 300 min of direct sun irradiation time. The first-order kinetic model fits the better curve with the correlation coefficients of 0.97509, 0.97608 and 0.98417, respectively. Trapping experiments shows the dominant of holes and superoxide as the primary reactive oxygen species.

Graphical abstract
  相似文献   

18.

Protonation of the molecularly rigid polymer of intrinsic microporosity PIM-EA-TB can be coupled to immobilisation of Fe(CN)63−/4− (as well as immobilisation of Prussian blue) into 1–2 nm diameter channels. The resulting films provide redox-active coatings on glassy carbon electrodes. Uptake, transport, and retention of Fe(CN)63−/4− in the microporous polymer are strongly pH dependent requiring protonation of the PIM-EA-TB (pKA ≈ 4). Both Fe(CN)64− and Fe(CN)63− can be immobilised, but Fe(CN)64− appears to bind tighter to the polymer backbone presumably via bridging protons. Loss of Fe(CN)63−/4− by leaching into the aqueous solution phase becomes significant only at pH > 9 and is likely to be associated with hydroxide anions directly entering the microporous structure to combine with protons. This and the interaction of Fe(CN)63−/4− and protons within the molecularly rigid PIM-EA-TB host are suggested to be responsible for retention and relatively slow leaching processes. Electrocatalysis with immobilised Fe(CN)63−/4− is demonstrated for the oxidation of ascorbic acid.

Graphical abstract

  相似文献   

19.
Bai  Huiyu  Yu  Cheng  Zhu  Haiyan  Zhang  Shengwen  Ma  Piming  Dong  Weifu 《Cellulose (London, England)》2022,29(2):893-906

Inspired by mussels, a new cellulose-based (CTP) adhesive was fabricated by simply blending via cellulose nanofibrils (CNFs), tannic acid (TA), and polyethyleneimine (PEI), where the preparation method was green, facile, and simple. The structure and properties were examined by FT-IR, TGA, XRD, SEM, lap shear tensile, and water absorption tests. The results showed that chemical bonds, hydrogen bonds, and chain entanglement were formed among CNFs, TA, and PEI. Compared with the CNF adhesive, the dry shear strength of the CTP adhesive increased 103% to 392.2?±?32.2 kPa. And the wet shear strength of CTP adhesive increased from 0 kPa to 144.7?±?20.1 kPa, indicating that the CTP adhesive can be used in humid or even water environments. Meanwhile, the water absorption of CTP adhesive decreased from 37.9?±?14.1% to 12.8?±?5.9%. It was the introduction of catechol groups and physical–chemical interactions of three components that endow the CTP adhesive with improved dry and wet adhesion strength and water resistance. Moreover, the proposed CTP adhesive could be used on the surface of various materials, including rubber, plastic, paper, wood, metal, and glass. Overall, this work shows that the CTP adhesive has a wide range of application prospects.

Graphical abstract
  相似文献   

20.

The cyanate anion (CNO), formed spontaneously within cells from urea and carbamoyl phosphate, usually functions as a biomarker of some diseases such as chronic kidney disease. Therefore, accurate determination of CNO is highly demanded. Herein, a 3-amino-2-naphthoic acid-based “turn-on” fluorescence probe was developed for specific detection of CNO. Upon the addition of sodium cyanate, the weak-fluorescent 3-amino-2-naphthoic acid could react with CNO, which triggered intense emission of green fluorescence. And up to 9-fold fluorescence enhancement was observed. The fluorescence enhancement ratios displayed a good linear relationship with the concentrations of CNO in the range of 0.5–200 μM. The high selectivity and sensitivity for CNO detection were investigated with the detection limit as low as 260 nM. The probe was further successfully applied to determine CNO in real samples such as tap water, human urine and serum samples, which offered a promising approach in practical applications.

Graphical abstract

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号