首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
As a variant of the twin-field quantum key distribution (TF-QKD), the sending-or-not twin-field quantum key distribution (SNS TF-QKD) is famous for its higher tolerance of misalignment error, in addition to the capacity of surpassing the rate–distance limit. Importantly, the free-space SNS TF-QKD will guarantee the security of the communications between mobile parties. In the paper, we first discuss the influence of atmospheric turbulence (AT) on the channel transmittance characterized by the probability distribution of the transmission coefficient (PDTC). Then, we present a method called prefixed-threshold real-time selection (P-RTS) to mitigate the interference of AT on the free-space SNS TF-QKD. The simulations of the free-space SNS TF-QKD with and without P-RTS are both given for comparison. The results showed that it is possible to share the secure key by using the free-space SNS TF-QKD. Simultaneously, the P-RTS method can make the free-space SNS TF-QKD achieve better and more stable performance at a short distance.  相似文献   

2.
《Physics letters. A》2020,384(16):126322
Quantum key distribution (QKD) is a promising application to establish unconditional secure communications by quantum mechanics. However, its widespread application still faces a great challenge, that is, the fundamental linear key-rate constraint called Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound. Recently, twin-field QKD (TF-QKD) was proposed (Lucamarini et al., 2018 [4]), it overcomes the constraint mentioned above. However, the original TF-QKD is based on the phase-encoding strategy, which requires active alignment. In this paper, we improve the original TF-QKD with the photon orbital angular momentum (OAM), and propose a novel reference frame independent protocol to overcome the reference frame dependence. No more alignment procedure is needed, and the intrinsic misalignment errors are eliminated by utilizing the rotation-invariance of OAM photons. Besides, the security performance is also improved.  相似文献   

3.
孙伟  尹华磊  孙祥祥  陈腾云 《物理学报》2016,65(8):80301-080301
非正交编码协议和诱骗态方法可以有效地抵御光子数分离攻击. 由于相干叠加态中单光子成分高达90%, 常作为单光子量子比特的替代出现, 用于量子信息过程处理和计算. 本文结合非正交编码协议和诱骗态方法提出一种新的量子密钥分发方案, 光源采用相干叠加态, 推导了单光子的密钥生成速率、计数率下限和误码率的上限, 利用Matlab 模拟了无限多诱骗态情况下和有限多诱骗态情况下密钥生成速率和传输距离的关系, 得出该方案可以提升密钥生成速率并且提高安全传输距离, 验证了该方案可以进一步提高量子密钥分发系统的性能.  相似文献   

4.
颜森林 《中国物理》2007,16(11):3271-3278
A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical coupling-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5\,Gbit/s and a modulation frequency of 1\,GHz, chaos modulation with a rate of 0.2\,Gbit/s and a modulation frequency of 0.2\,GHz and chaos shifting key with a rate of 0.2\,Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.  相似文献   

5.
6.
Abstract

A novel mm-wave generation scheme based on two phase modulators and two unbalanced Mach-Zehnder interferometers is proposed. Compared with the conventional Mach-Zehnder modulator-based scheme, the phase-modulator-based scheme can work steadily without an electrical control circuit for the DC bias, and it has smaller insertion loss. A full-duplex radio-over-fiber system was investigated by simulation, and its performance is not affected by chromatic dispersion for both downstream and upstream transmission. A 40-GHz mm-wave is generated from a 5-GHz driving signal. The system performance is analyzed by using eye diagrams and bit error rate. Results demonstrate that the performance is still very good, even after a 50-km transmission.  相似文献   

7.
王创业  宁提纲  李晶  裴丽  郑晶晶  张景川 《中国物理 B》2022,31(1):10702-010702
A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.  相似文献   

8.
The twin-field quantum key distribution (TF-QKD) protocol and its variations have been proposed to overcome the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. One variation called phase-matching QKD (PM-QKD) protocol employs discrete phase randomization and the phase post-compensation technique to improve the key rate quadratically. However, the discrete phase randomization opens a loophole to threaten the actual security. In this paper, we first introduce the unambiguous state discrimination (USD) measurement and the photon-number-splitting (PNS) attack against PM-QKD with imperfect phase randomization. Then, we prove the rigorous security of decoy state PM-QKD with discrete phase randomization. Simulation results show that, considering the intrinsic bit error rate and sifting factor, there is an optimal discrete phase randomization value to guarantee security and performance. Furthermore, as the number of discrete phase randomization increases, the key rate of adopting vacuum and one decoy state approaches infinite decoy states, the key rate between discrete phase randomization and continuous phase randomization is almost the same.  相似文献   

9.
A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.  相似文献   

10.

A new quantum bi-signature scheme based on GHZ states and W states is proposed. In the proposed scheme, Alice and Bob sign one same message and send their signatures to Charlie. Different from some typical quantum signature schemes, the new quantum bi-signature scheme firstly sets up a secure channel and the three parties verify each other with the correlation of GHZ states. Then Alice, Bob and Charlie utilize the measurement outcomes of W states to implement signature and verification. The proposed scheme without any key converts the message with quantum one-way function to improve the security. The new quantum bi-signature scheme can solve the most issues of two-way choice in real life, and analysis results show that the proposed scheme is secure and efficient. Furthermore, the proposed scheme can be implemented with the existing physical technologies.

  相似文献   

11.
提出一种新的不间断的主动相位补偿方案,在进行量子密钥分发的同时统计不匹配基量子比特在干涉仪不同输出端口上的随机计数分布,给出了由不匹配基量子比特统计数值计算相位漂移参数的计算公式,并由统计数值计算得到相位漂移参数.结果表明:该方案允许系统并行处理量子密钥分发与相位补偿,也充分利用了在原BB84协议中会被丢弃的不匹配基量...  相似文献   

12.
杨玉  许录平  阎博  张洪阳  申洋赫 《中国物理 B》2017,26(11):110305-110305
In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice,we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively.In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.  相似文献   

13.
We have experimentally demonstrated a decoy-state quantum key distribution scheme (QKD) with a heralded single-photon source based on parametric down-conversion. We used a one-way Bennett-Brassard 1984 protocol with a four states and one-detector phase-coding scheme, which is immune to recently proposed time-shift attacks, photon-number splitting attacks, and can also be proven to be secure against Trojan horse attacks and any other standard individual or coherent attacks. In principle, the setup can tolerate the highest losses or it can give the highest secure key generation rate under fixed losses compared with other practical schemes. This makes it a quite promising candidate for future quantum key distribution systems.  相似文献   

14.
张浩  郭星星  项水英 《物理学报》2018,67(20):204202-204202
随机源对于信息理论安全的密钥分发至关重要,本文提出了一种基于单向注入垂直腔面发射激光器系统的密钥分发方案.首先基于单向注入的方式产生无时延特征的激光混沌信号,并通过单向注入驱动两个从激光器产生带宽增强的混沌同步信号.然后经过采样、量化以及异或等后处理,生成密钥流.数值仿真结果表明,在单阈值情况下,合法用户之间的误比特率低至1%左右,合法用户与窃听者之间的误比特率都高于10%;在双阈值情况下,误比特率可以低至10-6.最后,对生成的密钥流进行了NIST随机性测试.该方案有效地增强了密钥分发的安全性.  相似文献   

15.
作为一种高精度测量工具,飞秒激光具有优于传统激光技术的特性,已被广泛应用于工业生产、航空航天、科学研究等领域。扫频采样法在很大程度上改善了机械振动、扫描速度过慢等问题,对飞秒激光的绝对测距性能提升有着重要的意义。基于扫频采样原理,提出了一种利用飞秒激光的大尺寸距离测量方法,并对该技术的测量原理、干涉光谱和解调算法等方面进行了研究。首先,根据飞秒激光的锁模生成原理和压电陶瓷的压电效应,介绍了飞秒激光器连续扫描重复频率的方法。在此基础上,结合传统的光学采样法原理,解释了扫频采样法的测距原理,推导并讨论了光纤延迟线的长度对扫描距离的影响。然后,搭建了基于扫频采样的飞秒激光测距系统,在线性导轨上进行了远距离的测量实验,同时设计了基于迈克尔逊干涉原理的He-Ne激光参考光路。根据实验环境修正了空气群折射率,分析了测量距离对光谱条纹峰值和宽度的影响,测量了不同目标位置处的激光扫描距离。在50.4 m的测量范围内,扫描距离从0.56 mm增加到1.12 mm,充分验证了光纤延迟线对提升大尺寸测距能力的重要性。周期性的频率扫描可产生互相关条纹,通过对测量光谱条纹进行希尔伯特变换处理,解算出实时的频率变化量和采样倍乘系数,从而获取被测的距离信息。此外,为了减小系统的时间延迟误差,提高测量的准确性,采用差分原理对算法进行了改进。在希尔伯特算法基础上,分别对频率和距离进行差分处理,解算距离信息。实验结果表明,经过对比,采用基于距离差分的改进算法处理数据,性能结果较好。算法改进后,系统在50 m范围内的测量精度从11 μm提高到4 μm,相对精度从2.2×10-9提高到8×10-8,测距准确性明显提高。通过分析重复性测量数据,并与增量式激光干涉仪结果比对,测量误差的标准差从10 μm提高到2 μm,最大相对稳定性从2×10-9提高到4×10-8,测距稳定性明显提高。因此,该方法有较为优秀的大尺寸测距能力,具有同时实现高精度、大尺寸、快速绝对测距的潜力,在未来的精密光谱测量领域有着很大的前景。  相似文献   

16.

Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.

  相似文献   

17.
Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes.Increasing each individual photon's channel capacity is an efficient way to increase the key generation rate, and high-dimensional(HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom(DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure,even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.  相似文献   

18.
Abstract

A novel photonic mm-wave frequency sextupling scheme based on an integrated Mach–Zehnder modulator with three arms is proposed in this article. Without any optical filter, a high-quality frequency sextupling mm-wave signal can be generated. Compared with mm-wave generation schemes based on traditional two-arm Mach–Zehnder modulators, the proposed scheme does not need DC bias and a complex electrical bias control circuit. Some non-ideal factors are taken into consideration to verify its performance, which proves that a slight deviation of the ideal values does not cause great degradation of the performance of the mm-wave generation scheme.  相似文献   

19.
东晨  赵尚弘  董毅  赵卫虎  赵静 《物理学报》2014,63(17):170303-170303
本文提出了一种基于旋转不变态的偏振无关测量设备量子密钥分配协议,既适用于偏振编码测量设备无关量子密钥分配系统,也应用于相位编码测量设备无关量子密钥分配系统的相干过程.通过在线偏振基进入信道传输前嵌入2块q玻片,使得在传输过程中将线偏振基转化为旋转不变的圆偏振基,而第三方对接收到的脉冲进行Bell态测量前,利用q玻片的算符可逆性,将圆偏振基还原为线偏振基进行测量,可以有效消除信道传输中偏振旋转导致的误码.本文分析了偏振无关的三诱骗态测量设备无关量子密钥分配系统的误码率,研究了密钥生成率与安全传输距离的关系,仿真结果表明,对于偏振编码测量设备无关量子密钥分配系统,该协议可以有效提高系统的最大安全通信距离,为实用的量子密钥分配实验提供了重要的理论参数.  相似文献   

20.
杜亚男  解文钟  金璇  王金东  魏正军  秦晓娟  赵峰  张智明 《物理学报》2015,64(11):110301-110301
测量设备无关量子密钥分发系统可以免疫任何针对探测器边信道的攻击, 并进一步结合诱惑态方法规避了准单光子源引入的实际安全性问题. 目前实验中一般采用弱相干光源, 但是该光源含有一定比例的空脉冲和多光子脉冲. 本文针对弱相干光源的具体特性, 采用量子力学的描述, 将各个器件进行量子化处理, 并同时考虑探测器的具体性能参数的影响, 分别给出了通信双方各自发送的脉冲含有特定光子数时产生的成功贝尔态和错误贝尔态的概率公式, 从理论上对相位编码和偏振编码测量设备无关量子密钥分发系统的误码率进行了定量分析, 分别推导并模拟了通信双方采用的平均光子数对称和不对称时误码率随传输距离的变化情况, 结果表明在偏振编码Z基中, 多光子脉冲不会引起误码; 在偏振编码X基和相位编码中, 受多光子影响, 产生的误码率较大. 对于不同的编码方式, 误码率均随传输距离的增加有不同程度的升高, 长距离传输时, 平均光子数越小, 产生的误码率越大; 在偏振编码X基和相位编码的短距离传输中, 相对于对称, 通信双方采用的平均光子数不对称时产生的误码率较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号