首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
Ding  Runze  Ding  Chenyang  Xu  Yunlang  Yang  Xiaofeng 《Nonlinear dynamics》2022,108(2):1339-1356

High precision motion control of permanent magnet linear motors (PMLMs) is limited by undesired nonlinear dynamics, parameter variations, and unstructured uncertainties. To tackle these problems, this paper presents a neural-network-based adaptive robust precision motion control scheme for PMLMs. The presented controller contains a robust feedback controller and an adaptive compensator. The robust controller is designed based on the robust integral of the sign of the error method, and the adaptive compensator consists of a neural network component and a parametric component. Moreover, a composite learning law is designed for the parameter adaption in the compensator to further enhance the control performance. Rigorous stability analysis is provided by using the Lyapunov theory, and asymptotic tracking is theoretically achieved. The effectiveness of the proposed method is verified by comparative simulations and experiments on a PMLM-driven motion stage.

  相似文献   

2.
Wang  Zongfan  Yang  Guolai  Wang  Xiuye  Sun  Qinqin 《Nonlinear dynamics》2022,110(1):449-466

In this paper, adaptive–adaptive robust boundary control is proposed for uncertain mechanical systems with inequality constraints. First, inequality constraints are taken into consideration, which are derived from the system or environment constraints on state bounds and control input bounds. Moreover, the original system with inequality constraints is transformed into a novel system with merely equality constraints by constraint reorganization techniques. Second, an adaptive robust control with a two-layer adaptive law is initiated. Here, the lower-layer adaptive law is used to overcome the (possibly rapidly time-varying) system uncertainty, which is bounded but unknown. Additionally, the adaptive law design parameters are chosen online by the upper-layer adaptive law, rather than according to the empirically set fixed values. Finally, the performance of the controller with uniform boundedness and uniform ultimate boundedness is theoretically and experimentally verified. The control strategy allows the electric cylinder-driven pitch system to achieve highly accurate and error-controllable motion within the motor drive capability.

  相似文献   

3.
A nonlinear adaptive (NA) controller in the task space is developed for the trajectory tracking of a 2-DOF redundantly actuated parallel manipulator. The dynamic model with nonlinear friction is established in the task space for the parallel manipulator, and the linear parameterization expression of the dynamic model is formulated. Based on the dynamic model, a new control law including adaptive dynamics compensation, adaptive friction compensation and error elimination items is designed. After defining a quadratic performance index, the parameter update law is derived with the gradient descent algorithm. The stability of the parallel manipulator system is proved by the Lyapunov theorem, and the convergence of the tracking error and the error rate is proved by the Barbalat’s lemma. The NA controller is implemented in the trajectory tracking experiments of an actual 2-DOF redundantly actuated parallel manipulator, and the experiment results are compared with the APD controller.  相似文献   

4.
This paper presents a novel implementation of an adaptive robust second-order sliding mode control (ARSSMC) on a mobile robot with four Mecanum wheels. Each wheel of the mobile robot is actuated by separate motors. It is the first time that higher-order sliding mode control method is implemented for the trajectory tracking control of Mecanum-wheeled mobile robot. Kinematic and dynamic modeling of the robot is done to derive an equation of motion in the presence of friction, external force disturbance, and uncertainties. In order to make the system robust, second-order sliding mode control law is derived. Further, adaptive laws are defined for adaptive estimation of switching gains. To check the tracking performance of the proposed controller, simulations are performed and comparisons of the obtained results are made with adaptive robust sliding mode control (ARSMC) and PID controller. In addition, a new and low-cost experimental approach is proposed to implement the proposed control law on a real robot. Experimental results prove that without compromising on the dynamics of the robot real-time implementation is possible in less computational time. The simulation and experimental results obtained confirms the superiority of ARSSMC over ARSMC and PID controller in terms of integral square error (ISE), integral absolute error (IAE), and integral time-weighted absolute error (ITAE), control energy and total variance (TV).  相似文献   

5.
In this paper, an adaptive fuzzy robust H controller is proposed for formation control of a swarm of differential driven vehicles with nonholonomic dynamic models. Artificial potential functions are used to design the formation control input for kinematic model of the robots and matrix manipulations are used to transform the nonholonomic model of each differentially driven vehicle into equivalent holonomic one. The main advantage of the proposed controller is the robustness to input nonlinearity, external disturbances, model uncertainties, and measurement noises, in a formation control of a nonholonomic robotic swarm. Moreover, robust stability proof is given using Lyapunov functions. Finally, simulation results are demonstrated for a swarm formation problem of a group of six unicycles, illustrating the effective attenuation of approximation error and external disturbances, even in the case of robot failure.  相似文献   

6.
Kuz’menko  A. A. 《Nonlinear dynamics》2022,109(3):1763-1775

Synchronization of chaotic systems is considered to be a common engineering problem. However, the proposed laws of synchronization control do not always provide robustness toward the parametric perturbations. The purpose of this article is to show the use of synergy-cybernetic approach for the construction of robust law for Arneodo chaotic systems synchronization. As the main method of design of robust control, the method of design of control with forced sliding mode of the synergetic control theory is considered. To illustrate the effectiveness of the proposed law, in this article it is compared with the classical sliding mode control and adaptive backstepping. The distinctive features of suggested robust control law are the more good compensation of parametric perturbations (better performance indexes—the root-mean-square error (RMSE), average absolute value (AVG) of error) without designing perturbation observers, the ability to exclude the chattering effect, less energy consuming and a simpler analysis of the stability of a closed-loop system. The study of the proposed control law and the change of its parameters and the place of parametric perturbation’s application is carried out. It is possible to significantly reduce the synchronization error and RMSE, as well as AVG of error by reducing some parameters, but that leads to an increase in control signal amplitude. The place of application of parametric disturbances (slave or master system) has no effect on the RMSE and AVG of error. Offered approach will allow a new consideration for the design of robust control laws for chaotic systems, taking into account the ideas of directed self-organization and robust control. It can be used for synchronization other chaotic systems.

  相似文献   

7.
Trajectory tracking of a mobile manipulator is a challenging research because of its complex nonlinearity and dynamics. This paper presents an adaptive control strategy for trajectory tracking of a mobile manipulator system that consists of a wheeled platform and a modular manipulator. When a robot system moves in the presence of sliding, it is difficult to accurately track its trajectory by applying the backstepping approach, even if we employ a non-ideal kinematic model. To address this problem, we propose using a combination of adaptive fuzzy control and backstepping approach based on a dynamic model. The proposed control scheme considers the dynamic interaction between the platform and manipulator. To accurately track the trajectory, we propose a fuzzy compensator in order to compensate for modeling uncertainties such as friction and external disturbances. Moreover, to reduce approximation errors and ensure system stability, we include a robust term to the adaptive control law. Simulation results obtained by comparing several cases reveal the presence of the dynamic interaction and confirm the robustness of the designed controller. Finally, we demonstrate the effectiveness and merits of the proposed control strategy to counteract the modeling uncertainties and accurately track the trajectory.  相似文献   

8.
The control problem of the single machine infinite bus system with TCSC is dealt with. Based on the maximization of the external disturbances on the system model, an adaptive nonlinear controller for large disturbance attenuation and a parameter updating law are designed by using the backstepping method. The parameter uncertainty of the transmission line is considered, as well as the influences of large external disturbances to the system output are mainly discussed. The nonlinear controller does not have the sensitivity to the influences of external disturbances, but also has strong robustness for system parameters variation. The simulation results show that the control effect of the large disturbance attenuation controller more advantages by comparing with the control performance of conventional nonlinear robust controller.  相似文献   

9.
Liu  Lu  Yang  Anxin  Chen  Weixing  Zhang  Weidong 《Nonlinear dynamics》2022,110(1):349-362

This paper is concerned with the tracking control of a class of uncertain strict-feedback systems subject to partial loss of actuator effectiveness, in addition to uncertain model dynamics and unknown disturbances. A resilient anti-disturbance dynamic surface control method is proposed to achieve stable tracking regardless of partial actuator faults. First, data-driven adaptive extended state observers are designed based on memory-based identifiers, such that the uncertain model dynamics, external disturbances and the unknown input gains due to actuator faults can be estimated. Next, a resilient anti-disturbance dynamic surface controller is developed based on recovered information from the data-driven adaptive extended state observers. After that, it is proven that the cascade system formed by the observer and controller is input-to-state stable. Finally, comparative studies are performed to validate the efficacy of the resilient anti-disturbance dynamic surface control method for nonlinear strict-feedback systems subject to partial loss of actuator effectiveness.

  相似文献   

10.
In this paper, a decentralized adaptive control scheme for multi-robot coverage is proposed. This control method is designed based on centroidal Voronoi configuration integrated with robust adaptive fuzzy control techniques. We consider simple single integrator mobile robots used for covering dynamical environments, where an adaptive fuzzy logic system is used to approximate the unknown parts of control law. A robust coverage criterion is used to attenuate the adaptive fuzzy approximation error and measurement noises to a prescribed level. Therefore, the robots motion is forced to obey solutions of a coverage optimization problem. The advantages of the proposed controller can be listed as robustness to external disturbances, computation uncertainties, and measurement noises, while applicability on dynamical environments. A Lyapunov-function based proof is given of robust stability, i.e. convergence to the optimal positions with bounded error. Finally, simulation results are demonstrated for a swarm coverage problem simultaneous with tracking mobile intruders.  相似文献   

11.
讨论了关节摩擦力矩影响下,具有柔性铰关节的漂浮基空间机器人系统的动力学控制问题.设计了基于高斯基函数的小脑神经网络(CMAC)鲁棒控制器和摩擦力矩补偿器.用奇异摄动理论对系统的动力学模型进行快慢变子系统分解,针对快变子系统,设计力矩微分反馈控制器来抑制机械臂关节柔性引起的振动;对于慢变子系统,设计了基于自适应CMAC神...  相似文献   

12.
航天器有限时间饱和姿态跟踪控制   总被引:1,自引:0,他引:1  
针对刚体航天器系统,对存在模型不确定性、外界干扰力矩和控制器饱和等条件下的姿态跟踪控制问题进行了研究。首先,考虑未知模型不确定性和外界干扰,且总干扰上界为未知常数,结合快速非奇异终端滑模、快速终端滑模趋近律以及辅助系统构造了基本的鲁棒有限时间饱和控制器,并通过辅助系统直接补偿了控制器饱和;其次,针对系统总干扰具有多项式上界的情形,进一步结合自适应控制算法,对其上界函数中的未知参数进行在线估计,并设计了自适应有限时间饱和控制器。同时,基于Lyapunov稳定性理论证明了所提出控制算法的有限时间收敛特性。最后,通过数值仿真验证所提出控制算法的控制效果,在两种控制器作用下姿态的跟踪精度分别为5×10-5和1×10-5,证明了所提出控制算法的有效性。  相似文献   

13.
Most commercial antilock braking system (ABS) is based on a look-up table. The table is calibrated through laboratory experiments and engineering field tests under specified road conditions, but it is not adaptive. To attack this problem, this paper proposes an adaptive exponential-reaching sliding-mode control (AERSMC) system for an ABS. The proposed AERSMC system is composed of an equivalent controller and an exponential compensator. The equivalent controller uses a functional-linked wavelet neural network (FWNN) to online approximate the system uncertainties and the exponential compensator is designed to eliminate the effect of the approximation error introduced by the FWNN uncertain observer with an exponential-reaching law. In addition, the adaptive laws online-tune the controller parameters in the sense of Lyapunov function to guarantee the system stability. Finally, the simulation results verify that the proposed AERSMC system can achieve favorable slip tracking performance and is robust against parameter variations in the plant.  相似文献   

14.
Centrifugal flywheel governors are known as chaotic non-autonomous mechanical devices used for automatic control of the speed of engines. The main characteristic of them is avoiding the damage caused by sudden change of the load torques. In this paper, the problem of robust finite-time synchronization of centrifugal flywheel governor systems is studied. The effects of unknown parameters, model uncertainties, external noises, and input nonlinearities are fully taken into account. We propose some adaptive laws to overcome the side effects of the unknown parameters of the system on the synchronization performance. Then, a robust adaptive switching controller is introduced to synchronize centrifugal flywheel governors with nonlinear control inputs in a given finite time. The finite-time fast convergence property of the proposed scheme is analytically proved and numerically illustrated.  相似文献   

15.
Zhang  Mingyue  Guan  Yongliang  Li  Chao  Luo  Sha  Li  Qingdang 《Nonlinear dynamics》2023,111(9):8347-8368

A composite controller based on a backstepping controller with an adaptive fuzzy logic system and a nonlinear disturbance observer is proposed in this paper to address the disturbance and uncertainty issues in the control of the optoelectronic stabilized platform. The matched and unmatched disturbances and system uncertainty are included in the stabilized platform model. The system's uncertainty and disturbance are approximated and estimated using an adaptive fuzzy logic system and a nonlinear disturbance observer. Moreover, the backstepping control algorithm is utilized to control the system. The simulations are performed in four states to confirm the viability of the proposed control technique. The proportional integral controller, proportional integral-disturbance observer controller, and fuzzy backstepping controller are contrasted with the proposed controller. It has been noted that the proposed controller's instantaneous disturbance's highest value is 5.1°/s. The maximal value of the coupling output for the two gimbals utilizing the proposed controller, however, is 0.0008°/s and 0.0018°/s, respectively. The findings presented here demonstrate that the backstepping controller, which is based on an adaptive fuzzy logic system and a nonlinear disturbance observer, is capable of precise tracking and dynamic tracking of a stabilized platform under disturbance and uncertainty.

  相似文献   

16.
In this paper, an H ?? output feedback controller is developed for a class of time-delayed MIMO nonlinear systems, containing backlash as an input nonlinearity. Particularly, a state observer is proposed to estimate unmeasurable states. The control law can be divided into two elements: An adaptive interval type-2 fuzzy part which approximates the uncertain model. The second part is an H ??-based controller, which attenuates the effects of external disturbances and approximation errors to a prescribed level. Furthermore, the Lyapunov theorem is used to prove stability of proposed controller and its robustness to external disturbance, hysteresis input nonlinearity, and time varying time-delay. As an example, the designed controller is applied to address the tracking problem of 2-DOF robotic manipulator. Simulation results not only verify the robust properties but also in comparison with an existing method reveal the ability of the proposed controller to exclude the effects of unknown time varying time-delays and hysteresis input nonlinearity.  相似文献   

17.
In this paper, a novel adaptive interval type-2 fuzzy sliding mode control (AIT2FSMC) methodology is proposed based on the integration of sliding mode control and adaptive interval type-2 fuzzy control for chaotic system. The AIT2FSMC system is comprised of a fuzzy control design and a hitting control design. In the fuzzy control design, an interval type-2 fuzzy controller is designed to mimic a feedback linearization (FL) control law. In the hitting control design, a hitting controller is designed to compensate the approximation error between the FL control law and the interval type-2 fuzzy controller. The parameters of the interval type-2 fuzzy controller, as well as the uncertainty bound of the approximation error, are tuned adaptively. The adaptive laws are derived in the sense of Lyapunov stability theorem, thus the stability of the system can be guaranteed. The proposed control system compared to adaptive fuzzy sliding mode control (AFSMC). Simulation results show that the proposed control systems can achieve favorable performance and robust with respect to system uncertainties and external disturbances.  相似文献   

18.
Hua  Changchun  Ning  Jinghua  Guan  Xinping 《Nonlinear dynamics》2021,103(2):1599-1610

This paper focuses on the output feedback tracking control for fractional-order interconnected systems with unmodeled dynamics. The reduced order high gain K-filters are designed to construct the estimation of the unavailable system state. Unmodeled dynamics is extended to the general fractional-order dynamical systems for the first time which is characterized by introducing a dynamical signal r(t). An adaptive output feedback controller is established using the fractional-order Lyapunov methods and proposed by novel dynamic surface control strategy. Then, it is confirmed that the considered system is semi-globally bounded stable and the errors between outputs and the desired trajectories can concentrate to a small neighborhood of the origin. Finally, a simulation example is introduced to demonstrate the correctness of the supplied controller.

  相似文献   

19.
With the demand for energy efficiency in electrohydraulic servo systems (EHSS), the separate meter-in and separate meter-out (SMISMO) control system draws massive attention. In this paper, the SMISMO control system is decoupled completely into two subsystems by the proposed indirect adaptive robust dynamic surface control (IARDSC) method. Indirect adaptive robust control (IARC) is proposed to address the internal parameter uncertainties and external disturbances. Dynamic surface control (DSC) is utilized in the design procedure of IARC to deal with the inherent ‘explosion of terms’ problem. The proposed IARDSC simplifies the design procedure and decreases the computational cost of the controller. Besides, a faster parameter estimation scheme is proposed to adapt to the parameter change for a better estimation performance. Finally, experimental results show that the proposed IARDSC can achieve a good parameter estimation and trajectory tracking performance. Meanwhile, two energy saving techniques are discussed.  相似文献   

20.
In this paper, novel adaptive neural network (NN) controllers with input saturation are presented for n-link robotic exoskeletons. The controllers consist of a state feedback controller and an output feedback controller. Through utilizing auxiliary dynamics, the controllers provide a new framework for input saturated control of these robotic systems which can feature the global stability for state feedback control. To compensate for the unknown dynamics of the system, adaptive schemes based on NNs are exploited. Furthermore, adaptive robust terms are utilized to deal with unknown external disturbances. Stability studies show that the closed-loop system is globally uniformly ultimately bounded (UUB) with the state feedback controller, where the global property of the NN-based controller is achieved exploiting a smooth switching function and a robust control term. Also, the system is semi-globally UUB with the output feedback controller. Effectiveness of the controllers is validated by simulations and experimental tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号