首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
非平衡晶化控制水滑石晶粒尺寸   总被引:13,自引:0,他引:13  
本文采用非平衡晶化法通过在晶化后期补加原料合成了一系列不同晶粒尺寸的水滑石(LDH)样品,研究表明:非平衡晶化法可在一定范围内调控LDH的粒径,所合成的LDH样品组成稳定,晶体结构完整。  相似文献   

2.
In this letter, we present a facile route to produce metastable tetragonal zirconia (ZrO2) nanoparticles via pH-controlled precipitation of dilute zirconyl nitrate dihydrate [ZrO(NO3)2·2H2O] solution in liquid NH3 under ambient conditions and calcination at 500 °C for 2 h. The phase pure tetragonal ZrO2 nanoparticles are obtained at pH 9. The effect of pH on metastable phase stabilization in precipitated ZrO2 nanoparticles is demonstrated with the help of XRD, SEM/EDX, and X-ray photoelectron spectroscopy techniques. The stability of tetragonal ZrO2 phase is attributed to the smaller crystallite size and greater oxygen deficiency in phase-pure tetragonal ZrO2.  相似文献   

3.
In present study, a series of rare earth metal oxide (CeO2, Pr2O3, and Nd2O3) nanoparticles have been prepared by sol–gel route using Ce(NO3)3·6H2O, Pr(NO3)3·6H2O and Nd(NO3)3·6H2O, and citric acid as precursor materials. Powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy are employed to characterize the size and morphology of the nano oxide particles. The particles are spherical in shape and the average particle size is of the order of 11–30 nm. Their catalytic activity was measured on the thermal decomposition of ammonium perchlorate and composite solid propellants (CSPs) by thermogravimetry (TG), TG coupled with differential thermal analysis (TG–DTA), and ignition delay measurements. The ignition delays and activation energies are found to decrease when rare earth metal oxide nanoparticles were incorporated in the system. Addition of metal oxide nanoparticles to AP led to shifting of the high temperature decomposition peak toward lower temperature and the burning rate of CSPs was also found to enhance. However, E a activation energy for decomposition was also found to decrease with each catalyst.  相似文献   

4.
Super paramagnetic ZnFe2O4 nanoparticles were prepared by a surfactant assisted (ethylamine) hydrothermal method along with heat treatment. The nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, high resolution scanning electron microscopy, Transmission electron microscopy, vibrating sample magnetometer and diffuse reflectance spectra technique. From the analyses, influence of calcination temperature on the structural, vibrational, morphological, magnetic and optical properties of ZnFe2O4 nanoparticles were investigated. The ZnFe2O4 nanoparticles with an average particle size of 17 nm showed high photocatalytic activity in the degradation of methylene blue (90 %). This work demonstrates that ZnFe2O4 can be used as a potential monocomponent in visible-light photocatalysis for the degradation of organic pollutants. Furthermore, the products were super paramagnetic and could be conveniently separated within 15 min and recycled by using simple magnet, which is very beneficial for the degradation of organic pollutants.  相似文献   

5.
A micrometer-sized nanostructured, magnetic, ball-like Fe x O y -CeO2 composite was synthesized through an ethylene-glycol mediated process. The synthesized samples were characterized by scanning electron microscopy combined with energydisperse X-ray analysis, transmission electron microscopy and X-ray powder diffraction. In the synthesis system, polyethylene glycol (PEG) and urea were found to play significant roles in the formation of the micrometer-sized spherical architecture of the precursor. The details of morphology and particle size could be changed with the initial concentration of Fe(NO3)3·9H2O and Ce(NO3)3·6H2O as the reactants. The magnetic Fe x O y -CeO2 composite with a similar morphology was readily obtained by calcination from the precursor. The characterization of transmission electron microscopy showed the calcined ball-like architecture was a highly porous structure consisting of many nanoparticles. Because of the micrometer-sized nanostructure and the multi-components as well as the magnetism, the as-obtained Fe x O y -CeO2 composite showed better activity and potentially easy recovery for the harmless degradation of hexachlorobenzene (HCB).  相似文献   

6.
Y2O3 sheets, rods, needles and tubes were synthesized from three precursors through hydrothermal reactions followed by calcination. The phase distribution and decomposition behaviors of the three precursors, Y2(OH)5.14(NO3)0.86·H2O, Y4O(OH)9(NO3) and hexagonal Y(OH)3, were investigated. The reaction temperature and initial pH value during the hydrothermal reaction showed great influence on the shape and particle size of the products. The precursors were converted to Y2O3 particles with the retained original morphology of the precursors.  相似文献   

7.
Abstract

In a template synthesis from ethanolic solution of MoOCl3, 2,6-diacetylpyridine (dap), and semioxamazide (sox), in the molar ratio 1:1:2, a dimeric molybdenum(V) complex [Mo2O2(H2dapsox)2]Cl6 · 4H2O (where H2dapsox = 2′,2″′-(2,6-pyridinediyldiethylidenedioxa-mohydrazide) was obtained. In a similar reaction, starting from La(NO3)3 · 6H2O, the complex [La(H2dapsox)(NO3) x ](NO3)3-x · 1/2EtOH (x = 1,2), having coordination number 9, was obtained. In the latter complex two NO3 Groups were bidentately coordinated in the solid state, but only one in the solution.

Besides [Mo2O2(TPP)2] (TPP = tetraphenylporphyrin), the molybdenum(V) complex [Mo2O2 (H2dapsox)2]Cl6 · 4H2O is the only other known example of a dimeric μ-oxodimolybdenum(V) species that is paramagnetic (μ = 0.95 BM). One of the Mo atoms has pentagonal bipyramidal coordination, and the other pentagonal pyramidal coordination. In aqueous solution a rare example of a pentagonal pyramidal ion [MoO(dapsox)]+ is presumably present. Solution EPR spectra (at 77K) cannot be related to either of the two known types of Mo(V) species based on the extent of g anisotropy. The substances also were characterized by IR and electronic spectroscopy, and by thermal analysis.  相似文献   

8.
本文首次通过pH值控制沉淀法制备前驱物丁二酸钛肼复盐, 并进一步热分解制备大比表面积钛黑颜料-黑色钛氧化物。通过比表面积(BET)、电子能谱(EDS)、X射线光电子能谱分析(XPS)、X射线粉末衍射(XRD)、场发射扫描电子显微镜(HRSEM)、物理吸附仪、激光粒度仪和Color i5型台式分光测色仪对黑色钛氧化物进行了表征, 确定了黑色钛氧化物的组成为2TiO2·Ti2O3, 其表面积为53.854 4 m2·g-1。并考察了酸源、水合肼用量、酸钛比、反应时间、pH、NaOH浓度和煅烧温度等各种反应参数对黑色钛氧化物的颗粒尺寸、分布均匀性和黑色度的影响。用元素分析仪和等离子体光谱仪测定了前驱物组成, 确定其组成为[Ti(C4H4O4)2]0.85·2Ti2O3·6N2H4·3H2O, 并探讨了黑色钛氧化物形成机理, 为新型混合价材料黑色钛氧化物的制备提供重要参考依据。  相似文献   

9.
Mössbauer spectroscopy, X-ray powder diffraction, and transmission electron microscopy were used to study the reactions of Fe3O4 or FeCl2 · 4H2O nanoparticles stabilized in a polyethylene (HPPE) matrix with gaseous chlorine and hydrogen chloride. These reactions produce FeCl2 · 2H2O nanoparticles, which retain the particle size and distribution over the HPPE matrix intrinsic to precursor nanoparticles. We propose chemical modification of iron-containing nanomaterials as a means for manufacturing iron(II) chloride nanoparticles.  相似文献   

10.
In order to obtain cobalt oxides nanoparticles we have used the thermal decomposition of some carboxylate type precursors. These precursors were obtained by the redox reaction between cobalt nitrate and ethylene glycol, either bulk or dispersed in silica matrix. The redox reaction takes place by heating the Co(NO3)2·6H2O-C2H6O2 solution or the Si(OC2H5)4-Co(NO3)2·6H2O-C2H6O2 gels. Thermal analysis of the Co(NO3)2·6H2O-C2H6O2 solution and Si(OC2H5)-Co(NO3)2·6H2O-C2H6O2 gels allowed us to establish the optimal value for the synthesis temperature of the carboxylate precursors. By fast heating of the solution Co(NO3)2·6H2O-C2H6O2, the redox reaction is immediately followed by the decomposition of the precursor, which represents an autocombustion process. The product of this combustion contains CoO as unique phase. We have obtained a mixture of CoO and Co3O4 by annealing the synthesized carboxylate compounds for 2 h at 400°C. With longer annealing time (6 h), we have obtained Co3O4 as unique phase. The XRD study of the crystalline phases resulted by thermal decomposition of the precursors embedded in silica matrix, showed that the formation of Co2SiO4 and Co3O4, as unique phases, depends on the thermal treatment.  相似文献   

11.
In this study H3PW12O40·9H2O and H3PMo12O40·6H2O (HPA) particles were changed into nano forms by heat-treatment in an autoclave as a simple, repaid, inexpensive and one step method. The particle size of these nanoparticles was around 25 nm. The as-synthesized nanostructures were characterized by dynamic light scattering, X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and inductively coupled plasma analyzer. Thermal stability of nanoparticles was surveyed by thermal gravimeter analyse. Acidity of prepared nanoparticles was investigated by pyridine adsorption method. Results showed rising acidity by declining particle size of HPA.  相似文献   

12.
We present a facile sol–gel route to synthesize lanthanum-substituted bismuth titanate (BLT). The chemical reactions and crystallization process of this method using the initial materials of bismuth subnitrate [4BiNO3(OH)2·BiO(OH)], lanthanum nitrate [La(NO3)3·6H2O] and tetrabutyl titanate [Ti(C4H9O)4] were investigated by thermogravimetric and differential thermal analysis, IR spectroscopy, gas chromatography/mass spectrometry, Raman spectroscopy and XRD. The evaporation of the dissolved CO2 in the amorphous BLT matrix is associated with the crystallization of BLT. The BLT gel is pure BLT perovskite when calcination temperature is higher than 500 °C. The grain size of the obtained nanoparticles ranges from 15 to 82 nm. The Arrhenius curve is obtained from the representation of the reduced sizes with respect to the calcination temperature. The activation energy of grain growth in BLT nanoparticles is 0.36 eV, which shows a rapidly growth process in the temperature range of 500–850 °C.  相似文献   

13.
纳米复合氧化物CuO·SnO2的制备与结构表征   总被引:3,自引:0,他引:3  
0引言由于纳米材料在热学、电学、磁学、光学等方面具有的独特性能,使其在新功能材料、催化、光电能转换等许多领域引起了人们浓厚的研究兴趣[1]。近年来,纳米催化剂对固体推进剂的燃烧性能影响研究已成为热点[2~9]。但是由于固体推进剂燃烧的特殊性,要求不仅提高燃速,而且降低压力指数,因此并非所有的纳米催化剂都是有效的。大量实践已证明[10],多种催化剂的复合使用,将可获得远远优于单一催化剂的效果。研究已发现[11],纳米复合氧化物是由多种元素复合而成,使其在结构和性能上得到互补和叠加,加上纳米粒子所具有的各种效应,从而产生独特…  相似文献   

14.
应用倒滴加法制备的粉状白钨酸,制备了两个新的不同组成的过氧钨酸钕:NH_4NdW_2(O_2)_5(OH)_2·4H_2O(1)和NH_4NdW_3(O_2)_3O_8·6H_2O(2)并对化合物的一些性质进行了表征。  相似文献   

15.
Tetranitratogold(III) Acid, (H5O2)[Au(NO3)4]·H2O: Synthesis, Crystal Structure, and Thermal Behaviour of the First Acidic Nitrate of Gold Yellow single crystals of (H5O2)[Au(NO3)4]·H2O grow upon cooling of a solution of Au(OH)3 in conc. nitric acid. The crystal structure contains (monoclinic, C2/c, Z = 4, a = 1214.5(2), b = 854.4(1), c = 1225.7(2) pm, β = 117.75(1)°, Rall = 0.0331) the Au3+ ion in coordination of four monodentate NO3 ligands. The [Au(NO3)4] units are linked by H5O2+‐ions. Significant hydrogen bonding is observed in the crystal structure between the H5O2+ ions and the H2O molecules. The thermal analysis reveals a five step decomposition leading to elemental gold.  相似文献   

16.
Polynuclear Cobalt Complexes. IV. Preparation and Structure of [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O The binuclear peroxo complex [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O I crystallizes in the triclinic space group P1 . Lattice constants are a = 9.405(4), b = 9.270(4), c = 12.218(6)Å, α = 89.58(5), β = 99.08(6), γ = 114.79(5)° for Z = 1. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar. Three chelate rings have a common plane, the ligand configuration is δ.  相似文献   

17.
The thermal behaviour of three coordination compounds, potential precursors of nickel ferrite [Fe2Ni(C4H4O5)2.5(OH)2]NO3·5H2O,[Fe2Ni(C4H8O3N2)4](NO3)8·24H2O and (NH4)[Fe2Ni(C4H4O5)3(OH)3]·3H2O has been investigated to evaluate their suitability as precursors for nickel ferrite. For a complete and reliable assignment of the thermal transformations, the isolable solid intermediates and end products were characterized by IR, X-ray diffraction and Mössbauer investigations. A decomposition scheme is proposed.  相似文献   

18.
The solid-state coordination reaction: Nd(NO3)3·6H2O(s)+4Ala(s) → Nd(Ala)4(NO3)3·H2O(s)+5H2O(l) and Er(NO3)3·6H2O(s)+4Ala(s) → Er(Ala)4(NO3)3·H2O(s)+5H2O(l) have been studied by classical solution calorimetry. The molar dissolution enthalpies of the reactants and the products in 2 mol L–1 HCl solvent of these two solid-solid coordination reactions have been measured using a calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpies of [Nd(Ala)4(NO3)3·H2O, s, 298.2 K] and[Er(Ala)4(NO3)3·H2O, s,298.2 K] at 298.2 K have been determined to be Δf H m 0 [Nd(Ala)4(NO3)3·H2O,s, 298.2 K]=–3867.2 kJ mol–1, and Δf H m 0 [Er(Ala)4(NO3)3·H2O, s, 298.2 K]=–3821.5 kJ mol–1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The reduction of metal nitrates (Cu(NO3)2 · 6H2O, AgNO3, and Ni(NO3)2 · 6H2O) by polyols under hydrothermal conditions at temperatures of 150–250°C was studied. The possibility of synthesizing copper, silver, and nickel powders with average particle sizes of 10 to 150 nm depending on the concentration of initial reagents, the temperature, and the nature of a reducer was established using X-ray diffraction analysis and atomic force microscopy. Lanthanide and alkali-earth nitrates were shown to form highly dispersed powders of metal carbonates with an average particle size of ~23 nm under similar conditions.  相似文献   

20.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号