首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
The three-dimensional dynamic problem of coplanar circular cracks in an elastic half-space with a clamped boundary condition is considered. The crack faces are subjected to harmonic loads. The problem is reduced to a system of two-dimensional boundary integral equations of the type of the Helmholtz potential for unknown discontinuities in the displacements of the opposite faces of the cracks. The stress intensity factors at the crack contours are obtained and discussed.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 153–159, January–February, 2005  相似文献   

2.
Integral relations between three-dimensional dynamic displacements (stresses) in an infinite elastic body with arbitrarily located plane cracks and discontinuities in the displacements of the opposite crack faces are presented. The influence of opening cracks on each other is considered in the problem on crack faces loaded by pulse forces. This problem is reduced to a system of boundary integral equations of the wave-potential type in a time domain. The dynamic mode I stress intensity factors are determined for two coplanar elliptic cracks under forces in the form of the Heaviside function  相似文献   

3.
A joint approach to the study of two non-classical fracture mechanisms, namely fracture of cracked materials with initial (residual) stresses acting along the crack planes and fracture under compression along parallel cracks, is considered in the framework of three-dimensional linearized solid mechanics. Mathematical statements of problems for pre-stressed solids that contain interacting circular cracks are given. Problems for an infinite solid containing two parallel co-axial cracks and for a space with the periodical set of co-axial parallel cracks as well as for a half-space with near-the-surface crack are solved. Several patterns of loading on the crack faces (normal loading, radial shear and torsion) are considered. The effects of initial stresses on stress intensity factors are analyzed for highly elastic materials with some types of elastic potentials. Formulation of fracture criteria accounting effect of initial (residual) stresses is given. Critical parameters of fracture of solids containing interacting cracks under compression along the cracks are calculated. The influence of geometrical parameters of the problems as well as physical and mechanical properties of materials on these critical parameters is analyzed.  相似文献   

4.
层状介质中多个非共面Griffith裂纹的弹性波散射问题研究   总被引:2,自引:0,他引:2  
本文利用积分变换的方法,研究了层状介质中多个非共面Griffith裂纹的弹性波散射问题,导出了当入射波分别为P(SV)波及SH波时的散射对偶积分方程,并以双覆盖层半空间中的双裂纹为例,对反平面剪切波的散射场进行了求解和较为详尽的分析。最后通过数值计算,得到了许多有关的动力学特性曲线,从而揭示了层状介质中多裂纹弹性波散射问题中的某些内在规律。  相似文献   

5.
N. Sarkar  A. Lahiri 《Meccanica》2013,48(1):231-245
Recently, Sherief et al. (Int. J. Solids Struct. 47:269–275, 2010) proposed a model in generalized thermoelasticity based on the fractional order time derivatives. The propagation of electro-magneto-thermoelastic disturbances in a perfectly conducting elastic half-space is investigated in the context of the above fractional order theory of generalized thermoelasticity. There acts an initial magnetic field parallel to the plane boundary of the half-space. Normal mode analysis together with the eigenvalue approach technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The obtained solution is then applied to two specific problems for the half-space, whose boundary is subjected to (i) thermally isolated surfaces subjected to time-dependent compression and (ii) a time-dependent thermal shock and zero stress. The effects of fractional parameter and magnetic field on the variations of different field quantities inside the half-space are analyzed graphically.  相似文献   

6.
An axisymmetric annular electric dislocation is defined. The solution of axisymmetric electric and Volterra climb and glide dislocations in an infinite transversely isotropic piezoelectric domain is obtained by means of Hankel transforms. The distributed dislocation technique is used to construct integral equations for a system of co-axial annular cracks with so-called permeable and impermeable electric boundary conditions on the crack faces where the domain is under axisymmetric electromechanical loading. These equations are solved numerically to obtain dislocation densities on the crack surfaces. The dislocation densities are employed to determine field intensity factors for a system of interacting annular and/or penny-shaped cracks.  相似文献   

7.
This paper contains a theoretical formulations and solutions of multiple cracks sub- jected to an anti-plane time-harmonic point load in a functionally graded strip. The distributed dislocation technique is used to construct integral equations for a functionally graded material strip weakened by several cracks under anti-plane time-harmonic load. These equations are of Cauchy singular type at the location of dislocation, which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to evaluate the stress intensity factor and strain energy density factors (SEDFs) for multiple cracks with differ- ent configurations. Numerical calculations are presented to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded strip with multiple curved cracks.  相似文献   

8.
In this work, we derive a set of governing equations for a mathematical model of generalized thermoelasticity in poroelastic materials. This model predicts finite speeds of propagation of waves contrary to the model of coupled thermoelasticity where an infinite speed of propagation is inherent. Next, we prove the uniqueness of solution of these equations under suitable conditions. We also obtain a reciprocity theorem for these equations. A thermal shock problem for a half-space composed of a poroelastic material saturated with a liquid is then considered. The surface of the half-space is assumed to be traction free, permeable, and subjected to heating. The Laplace transform technique is used to solve the problem. Numerical results for the temperature in the elastic body and fluid, displacement of the elastic body, velocity of the fluid, and stresses for both components are obtained and represented graphically.  相似文献   

9.
In this study, the transient response of multiple cracks subjected to shear impact load in a half-plane is investigated. At first, exact analytical solution for the transient response of Volterra-type dislocation in a half-plane is obtained by using the Cagniard-de Hoop method of Laplace inversion and is expressed in explicit forms. The distributed dislocation technique is used to construct integral equations for a half-plane weakened by multiple arbitrary cracks. These equations are of Cauchy singular type at the location of dislocation solved numerically to obtain the dislocation density on the cracks faces. The dislocation densities are employed to determine dynamic stress intensity factors history for multiple smooth cracks. Finally, several examples are presented to demonstrate the applicability of the proposed solution.  相似文献   

10.
This paper considers the equations of two-dimensional elasticity theory in nonsmooth domains. The domains contain curvilinear cracks of variable length. On the crack faces, conditions are specified in the form of inequalities describing mutual nonpenetration of the crack faces. It is proved that the solutions of equilibrium problems with a perturbed crack converge to the solution of the equilibrium problem with an unperturbed crack in the corresponding space. The derivative of the energy functional with respect to the length of a curvilinear crack is obtained.  相似文献   

11.
In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in the context of the two-temperature generalized thermoelasticity theory [Youssef, H., 2005a. The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, J. Appl. Math. Mech., 26(4), 4827; Youssef, H., 2005b. Theory of two-temperature generalized thermoelasticity, IMA J. Appl. Math., 1–8]. The medium is assumed initially quiescent. Laplace transform and state space techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to thermal shock and traction free. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the two-temperature parameter.  相似文献   

12.
The problem of determining the stress field in an elastic strip of finite width when the uniform tension is applied to the faces of two collinear symmetrical cracks situated within it is considered. By using the Fourier transform, the problem can be solved with a set of triple integral equations. These equations are solved using Schmidts method. This method is suitable for solving the strips problem of arbitrary width.  相似文献   

13.
涉及两相正交各向异性体界面下裂纹间干涉问题的研究.多裂纹问题被分解为只含单裂纹的子问题,利用位错理论和裂面应力自由条件,列出一组可数值求解位错密度函数的奇异积分方程,从而求得应力强度因子.  相似文献   

14.
In the present paper dynamic stress intensity factor and strain energy density factor of multiple cracks in the functionally graded orthotropic half-plane under time-harmonic loading are investigated. By utilizing the Fourier transformation technique the stress fields are obtained for a functionally graded orthotropic half-plane containing a Volterra screw dislocation. The variations of the material properties are assumed to be exponential forms which the equilibrium has an analytical solution. The dislocation solution is utilized to formulate integral equation for the half-plane weakened by multiple smooth cracks under anti-plane deformation. The integral equations are of Cauchy singular type at the location of dislocation which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to determined stress intensity factor and strain energy density factors (SEDFs) for multiple smooth cracks under anti-plane deformation. Numerical examples are provided to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded orthotropic half-plane with multiple curved cracks.  相似文献   

15.
In this paper, the problem of two equal coplanar cracks with allowance for the crack faces contact interaction was investigated. The problem of the cracks located in homogeneous, isotropic, and linearly elastic solid subjected to normally incident tension–compression wave is solved by the boundary integral equations method. The influence of the distance between two cracks on the stress intensity factors (opening mode and transverse shear mode) is studied for a range of wave numbers. The results are compared with those obtained neglecting cracks’ closure.  相似文献   

16.
This paper considers local temperature variations near the tip of a crack in the presence of regions in which the crack faces interact. It is assumed that these regions are adjacent to the crack tip and are comparable in size to the crack size. The problem of local temperature variations consists of delay or retardation of crack growth. For a crack with connections between the crack faces subjected to external tensile loads, an induced thermoelastic stress field, and the stresses at the connections preventing crack opening, the boundary-value problem of the equilibrium of the crack reduces to a system of nonlinear singular integrodifferential equations with a Cauchy kernel. The normal and tangential stresses at the connections are found by solving this system of equations. The stress intensity factors are calculated. The energy characteristics of cracks with tip regions are considered. The limiting equilibrium condition for cracks with tip regions is formulated using the criterion of limiting stretching of the connections.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 133–143, January–February, 2005  相似文献   

17.
Summary  Transient stresses around two parallel cracks in an infinite elastic medium are investigated in the present paper. The shape of the cracks is assumed to be square. Incoming shock stress waves impinge upon the two cracks normal to tzheir surfaces. The mixed boundary value equations with respect to stresses and displacements are reduced to two sets of dual integral equations in the Laplace transform domain using the Fourier transform technique. These equations are solved by expanding the differences in the crack surface displacements in a double series of a function that is equal to zero outside the cracks. Unknown coefficients in the series are calculated using the Schmidt method. Stress intensity factors defined in the Laplace transform domain are inverted numerically to the physical space. Numerical calculations are carried out for transient dynamic stress intensity factors under the assumption that the shape of the upper crack is identical to that of the lower crack. Received 2 February 2000; accepted for publication 10 May 2000  相似文献   

18.
Cracks driven by shrinkage due to cooling or drying arrange themselves via mutual interaction. For parallel straight crack arrays driven by idealized transient shrinkage fields the scaling behavior in an infinite half-space is derived analytically by means of fracture mechanics bifurcation analysis with two plausible scaling assumptions. Crack spacing in thermal shock crack patterns has been found to be approximately proportional to the crack length and inversely proportional to the crack velocity. The spacing of tunneling cracks formed in a drying layer between plates scales as the 2/3rd power of layer thickness as a consequence of the specific interaction between the tunneling cracks. The difference in scaling behavior in the two cases is explained by the dimensionality of the geometrical setup determined by the boundary condition rather than by different physical processes. In either case, good agreement between theory and experiments is found.  相似文献   

19.
A dynamic problem for two equal rectangular cracks in an infinite elastic plate is considered. The two cracks are placed perpendicular to the plane surfaces of the plate. An incoming shock tensile stress is returned by the cracks. In the Laplace transform domain, the boundary conditions at the two sides of the plate are satisfied using the Fourier transform technique. The mixed boundary conditions are reduced to dual integral equations. Crack displacement is expanded in a series of functions which are zero outside of the cracks. The unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors are defined in the Laplace transform domain and these are inverted using a numerical method.  相似文献   

20.
We consider the equilibrium problem for an elastic incompressible half-space weakened by two near-surface wedge-like cracks, whose lie in the same plane perpendicular to the half-space surface and have a common vertex. We use the Papkovich-Neuber representation to reduce the problem to finding two harmonic functions satisfying the mixed boundary conditions. These functions are constructed in spherical coordinates by using a Mehler-Fock type integral representation in Legendre functions. The analytic solution thus obtained permits finding the character of the stress distribution near the common tip of the cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号