首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unimolecular decomposition study of dibromomethoxy radical, CHBr2O, and its isomeric hydroxy dibromomethyl radical, CBr2OH, is carried out using ab initio electronic molecular structure methods. Three kinds of reaction pathways are examined, C–H and C–Br bond scissions, intramolecular three-center HBr elimination and isomerization. Based on the ab initio results, energy-specific rate coefficients k(E) and thermal rate constants k(T,P) are evaluated using RRKM theory and master equation numerical analysis. Relevance to existing experimental evidence is discussed.  相似文献   

2.
Using velocity map ion imaging technique, the photodissociation of n-C4H9Br in the wavelength range 231–267 nm was studied. The results and our ab initio calculations indicated that the absorption of n-C4H9Br in the investigated region originated from the excitations to the lowest three repulsive states, as assigned as 1A″, 2A′ and 3A′ in Cs symmetry. Dissociations occurred on the PES surfaces of the three states, terminating in C4H9+Br (2P3/2) or C4H9 + Br* (2P1/2) as two channels, and being impacted by an avoided crossing between the PES surfaces of the 2A′ and 3A′ states. The transition dipole to the 1A″ state was perpendicular to the symmetry plane, so perpendicular to the C–Br bond. The transitions to the 3A′ state was polarized parallel to the symmetry plane, and also parallel to the C–Br bond. While the transition dipole to the 2A′ state was in the symmetry plane, but formed an angle of about 53.1° with the C–Br bond. We have also determined the avoided crossing probabilities, which affected the relative fractions of the individual pathways, for the photolysis of n-C4H9Br near 234 nm and 267 nm.  相似文献   

3.
Photolyses of CF3C(O)X and C2F5C(O)X (X=Cl, F) at 254 nm in the presence of O2 yield the perfluorinated radicals C2F5O (C2) and CF3O (C1), respectively. The C2 radicals decompose to give CF3 radicals:
C2F5O→CF3+CF2O
which, in turn, react with O2 leading to the formation of C1 radicals. When in addition to O2, CO is present, the C1 radicals react with it leading to its catalytic oxidation to CO2. The trioxide CF3OC(O)O3C(O)OCF3 was observed following the photolysis of all four halides in the presence of O2 and CO.

The other radical partners coming from the initial step in the photolysis (XC(O)) as well as the products of their reaction with O2 (XC(O)Oy, y=1, 2) do not react with CO but when X=F they lead to the formation of a new stable peroxy molecule with the formula CF3OC(O)O2C(O)F. Some of the properties of this new molecule, its stability and its IR features are presented in this work.  相似文献   


4.
The relative modifications induced in the structure of perfluorodiethyl ether (CF3CF2)2O and perfluoroisopropyl methyl ether CF3OCF(CF3)2 by oxygen and fluorine protonation are studied at the RHF level with the 3–21G basis and correlated with their proton affinities and dissociation energies.  相似文献   

5.
The spectral analysis indicates that all isomers of C60O, C70O and C60O2 have an epoxide-like structure (an oxygen atom bridging across a C–C bond). According to the geometrical structure analysis, there are two isomers of fullerene monoxide C60O (the 5,6 bond and the 6,6 bond), eight isomers of fullerene monoxide C70O and eight isomers of fullerene dioxide C60O2. In order to simulate the real reaction conditions at 300 K, the calculation of the different isomers of C60O, C60O2 and C70O fullerene oxides was carried out using the semiempirical molecular dynamics method with two different approaches: (a) consideration of the geometries and thermodynamic stabilities, and (b) consideration of the ozonolysis mechanism. According to the semiempirical molecular dynamic calculation analysis, the probable product of this ozonolysis reaction is C60O with oxygen bridging over the 6–6 bond (C2v). The most probable product in this reaction contains oxygen bridging across in the upper part of C70 (6–6 bond in C70O-2 or C70O-4) an epoxide-like structure. C60O2-1, C60O2-3 and C60O2-5 are the most probable products for the fullerene dioxides. All of these reaction products are consistent with the experimental results. It is confirmed that the calculation results with the semiempirical molecular dynamics method are close to the experimental work. The semiempirical molecular dynamics method can offer both the reaction temperature effect by molecular dynamics and electronic structure, dipole moment by quantum chemistry calculation.  相似文献   

6.
用从头算和MP2方法求得亚硝酸甲酯的基态、第一和第二激发态解离为CH3O和NO自由基的解离能分別为238.14、68.99和-183.97kJ/mol,而CH3O和NO易于生成甲醛和硝酰。由CI方法求出的亚硝酸甲酯直接生成甲醛和硝酰的基态和激发态反应曲线表明,该反应难以按这种机理进行。因此,以上计算支持了实验提出的亚硝酸甲酯光反应生成甲醛和硝酰的两种机理中的光解离机制。  相似文献   

7.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC ≈ 150° ((CF3SO2)2CF2) are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

8.
Experimental results are presented of a Fourier transform IR product study at 298 K of the reaction system CFO+O2 at oxygen pressures between 3 and 250 mbar. Pulsed photolysis of oxalyl fluoride (CFO)2 or formyl fluoride (CHFO) at 193 nm was used to produce CFO. As stable products we detected bis-fluoroformyl peroxide, carbonyl fluoride and carbon dioxide. The yields of the peroxide and of CF2O were measured as a function of [O2]/[precursor] and are discussed qualitatively.  相似文献   

9.
The relative stabilities of thiourea in water are investigated computationally by considering thiourea–water complexes containing up to 1–6 water molecules (CS(NH2)2(H2O)n=1–6) using density functional theory and MP2 ab initio molecular orbital theory. The results show that the thiourea complex is stable and has an unusually high affinity for incoming water molecules. The clusters are progressively stabilized by the addition of water molecules, as indicated by the increasing of the binding energy. The binding energy of the cluster to each H2O molecule is about 33 kJ mol−1 for n=1–5.The C–S bond, N–C bond distance, Mulliken populations and binding energy keep approximately constant as the clusters increase in size with an increasing number of H2O molecules. As the solvation progresses, the C–S distance increases monotonically while the Mulliken populations on the C–S bond reduces monotonically with the addition of each H2O molecule, indicating that the C–S bond of the thiourea unit in the clusters is de-stabilized with an increasing number of H2O molecules. Charge transfers for the clusters are mainly found at N, S atoms of the thiourea.  相似文献   

10.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC≈ 150° ((CF3SO2)2CF2 are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O2 possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

11.
The reaction between metallic barium and fluoroisopropanol or alcoholysis of [Ba(OPri)2] produces a pentanuclear fluoroalkoxide. Its X-ray structure determination showed its formulation to correspond to Ba55-OH)[μ3-OCH(CF3)2]42-OCH(CF3)2]4 [OCH(CF3)2](THF)4(H2O)·THF. The metallic core is based on a square pyramid encapsulating an hydroxo ligand. In addition to the barium---alkoxide bonds [2.53(3)–2.86(3) Å] neutral O-donors, four THF [2.82(2)–2.86(3) Å] and one H2O [2.79(3) Å] and secondary barium---fluorine interactions [2.99(2)–3.31(2) Å] ensure high coordination numbers, from 9 to 11 for the metal centers. Hydrogen bonding between the apical fluoroisopropoxide, the water molecule and one THF molecule, non-bonded to a metal center, accounts for the stability of the hydrate and illustrates the Lewis acidity of fluoroalkoxides. Thermal decomposition leads to BaF2.  相似文献   

12.
The hydrogen abstraction reactions of C2F5CHO with OH radicals and Cl atoms have been investigated theoretically by a dual-level direct dynamics method. In this study, the optimized geometries and frequencies of the stationary points are calculated at the MP2/cc-pVDZ level of theory. The energies of the stationery points and the selected points along the minimum energy paths are further refined at the MC-QCISD level using the MP2 geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of the two reactions. This result indicates that both of reactions proceed via indirect reaction mechanisms. The enthalpies of formation for the reactant C2F5CHO and the product radical C2F5CO are estimated by isodesmic reactions at the MC-QCISD//MP2/cc-pVDZ level. At the same level, the rate constants are calculated by canonical variational transition state theory (CVT) incorporating with the small-curvature tunneling correction (SCT) in the temperature range 200–1000 K. Good agreement between the calculated and experimental rate constants is obtained at the room temperature. Due to the lack of the kinetic data of these reactions, the fitted three-parameter expressions based on the CVT/SCT rate constants within 200–1000 K are k1 = 1.64 × 10−24 T4.33 exp (−566.1/T) and k2 = 6.33 × 10−15 T1.35 exp (550.3/T) cm3 molecule−1 s−1, respectively.  相似文献   

13.
Total of seven possible isomers for both methano- and imino-[50]fullerenes have been investigated by ab initio calculations. An insight into the relationship between structures and stabilities of these isomers is presented. The results show that the [5,6]-closed structure with CH2 group bridging across a [5,6] type of C–C bond near the equatorial belt is the ground state of C50CH2 while that of the C50NH is [5,6]-open fashioned with NH group bridging across a [5,6] type of C–C bond at the site between the pole and the equatorial belt. The underlying reason of this structural difference may be the larger atomic size and the greater Pauli repulsion of carbon atom compared with those of nitrogen atom. The relative stabilities of the isomers are determined by the strain of the cage, especially the strain at the equator. And although the contribution of the cyclic phenylene substructure at the equatorial belt to the stabilization of the favored isomers probably can not be ignored, the contribution of the conjugation effect to the stabilization is not competitive. Energy difference among three favored isomers is not very large, hence it can be expected that some isomers will co-exist in a mixture once methano- and imino-[50]fullerenes are synthesized. The calculated NICSs for the isomers of C50CH2 and C50NH will be useful for their identification and characterization.  相似文献   

14.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

15.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

16.
Gas-phase reaction of C(1)F3S(2)O2O(3)C(4)H2C(5)F3 and F(16) is investigated using DFT method. The geometries of various stationary points and their relative energies are obtained from 6-31+G*, 6-311G**, and 6-311++G** levels. In the SN2(C) reaction leading to the cleavage of the C(4)–O(3) bond, the reaction complex results from attacking of F at a hydrogen atom H11 attached to carbon atom C(4). Afterward, F is attacking the atom C(4) from the backside of the atom O(3) with the help of the neighboring effect, and meanwhile a multi-membered ring, F(16)–H(11)–C(4)–C(5)–F(16), is being formed. The SN2(C) reaction is irreversible. On the contrary, the SN2(S) reaction leading to the cleavage of the S(2)–O(3) bond is reversible, and it is initiated by attacking of F at the atom S(2) from the backside of the atom O(3). The products of the reaction CF3SO3CH2CF3 +F should be, thermodynamically, controlled due to the reversibility of the SN2(S) reaction, and those result, chemospecifically, from the cleavage of the C–O bond. At last, the SCRF calculations confirm that the solvent effect is preferable to the SN2(C) reaction.  相似文献   

17.
A photoluminescent supramolecular compound [Cd(Hbic)2(H2O)]·(4,4′-bpy)·H2O, H2bic = 1-H-benzimidazole-5-carboxylic acid, has been synthesized and structurally characterized. With CH–π stacking and hydrogen bond, the 4,4′-bipyridine is used as template to construct the neighboring layers into a three-dimensional supramolecular architecture. Solid-state emission spectrum of compound 1 shows luminescence with emission peak at 565 nm.  相似文献   

18.
The title compound, CF3CF2CF2(CF3)2CCH2CH2CH2CF(CF3)2, was synthesised in high yield by a free radical addition of heptafluoroisopropyl iodide to 3-(perfluoro-1, 1-dimethylbutyl)-1- propene followed by reduction of the adduct. Physical properties and solubilities for oxygen, nitrogen, carbon dioxide and air of the new fluorohydrocarbon have been determined.  相似文献   

19.
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using 60Co γ-radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state 19F NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of –O–CF3 and –CF2–CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the –CF2–CF3 chain ends and –CF– branch points were not linearly related to the composition, rather they were correlated with the radical yields measured at 77 K.  相似文献   

20.
Using the long-path FTIR method, glycolaldehyde, CH2(OH)CHO, was detected among the products in photolysis of mixtures containing C2H4, NO and RONO (R = alkyl group) at ppm concentrations in air. The results suggest the occurrence of both unimolecular dissociation and O2 reaction of an oxy-radical, CH2(OH)CH2O, formed in the HO-initiated oxidation of C2H4 in the presence of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号