首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored the affinity of calcite to adsorbed organic molecules as an approach to the conservation of cultural heritage built of marble and limestone. The utilization of phenylmalonic and benzylmalonic acids provided a hydrophobic adsorptive interface, adequate to prevent processes of aqueous weathering. Samples of marble powder (polycrystalline calcite) were impregnated with solutions of phenylmalonic and benzylmalonic acid at three concentrations (5 x 10(-2), 5 x 10(-3), and 5 x 10(-4) M) and different pH values (6.00, 7.00, and 8.00). The surface charge of the calcite suspensions was determined by potentiometric measurements under equilibrium conditions at room temperature in aqueous solution of the dicarboxylic acids, in order to understand the influence of the electrokinetic potential in the surface association. The adsorbed amounts were determined by calculation of the thermodynamic equilibria of solutions. The presence of the organic interface on the mineral surface was corroborated by Raman spectroscopy and small-angle X-ray scattering (SAXS). The results indicate effective adsorption of both dicarboxylic acids as a function of the concentration and pH, and several other conditions that favors coulombic interaction, an absence of electrophoretic mobility or surface electroneutrality related to the solid surface potentials. The coverage of pores by dicarboxylic adsorbate modified the geometrical pore shape and the pore size distribution, filling all the pores of larger than 80 A diameter, giving as a result a mesoporous structure. This change in the surface morphology by organic adsorbates constitutes a modification in the diffusional processes of the environment on the mineral surface.  相似文献   

2.
The adsorption of 14 trivalent lanthanoid ions and yttrium ion (denoted by Ln3+) on calcite surfaces was investigated under various solution conditions of pH (pH = 6.8-7.8) and calcium ion concentration (pCa = -log[Ca2+]= 2.0 and 3.0), and different surface conditions of calcite crystals (well-developed and rough surfaces). The lanthanoid ions were equilibrated in a solution of ionic strength 0.1 mol dm-3(NaCl) saturated with calcite at 25.0 degrees C using excess (solid) calcite crystals suspended in solution. The concentrations of the lanthanoid ions on the calcite crystals (C(cry)/mol kg-1) and in solution (C(soln)/mol dm-3) were determined by means of inductively coupled plasma-mass spectrometry (ICP-MS). It is found that the distribution ratio (D=C(cry)/C(soln) decreases as the atomic number of the lanthanoid increases showing the so called Tetrad Effect. D values increase with increasing pH, whereas they are independent of the calcium ion concentration (i.e., carbonate ion concentration). These results indicate that lanthanoid ions are adsorbed on the calcite surface together with hydroxide ions, i.e., the adsorption of hydroxo-complexes. The heavy lanthanoid ions (Er3+ to Lu3+) are adsorbed as monohydroxo-complexes, (Ln(OH)2+), whereas those of the light lanthanoids are predominantly adsorbed as dihydroxo-complexes (Ln(OH)2+). Other lanthanoids show competitive adsorption reactions of mono- and dihydroxo complexes. Both successive adsorption constants of hydroxo complexes increase with decreasing atomic number of the lanthanoid. The rough surface of calcite is quite active and the distribution ratio of the lanthanoid ions on the rough surface is much higher than that on the well-developed crystalline surface. Rates of adsorption of lanthanide ions were measured and mechanisms are being discussed  相似文献   

3.
The rates of dissolution of calcitic Carrara marble have been reported to be significantly reduced in alkaline pH (pH 8.25) at 25 degrees C in the presence of (1-hydroxyethylidene)-1,1 diphosphonic acid (HEDP). The adsorption takes place at the calcite/water interface at the double layer through the interaction of charged surface species with the charged solution species of the adsorbate. The present work focused on obtaining a better understanding of the interaction of the calcite surface with HEDP. Calculations were performed according to the triple layer model, assuming the formation of surface complexes between the charged surface species of calcite and the species of HEDP dominant at pH 8.25. According to the model, the adsorbed species are located at the inner Helmholtz plane of the electrical double layer. Strong lateral interactions between the adsorbed species were suggested and were corroborated from the calculation of the respective energy, which was equal to 69 kJ mol(-1). The adsorption isotherm was consistent with the proposed model at low surface coverage values, while discrepancies between the values experimentally measured and the predicted were found at higher adsorbate concentrations. The deviations from the predicted values were attributed to the fact that HEDP adsorption on calcite resulted in the formation of multiple layers. The model explained adequately the changes in the zeta-potential values of calcite in the presence of HEDP in the solution which resulted in charge reversal upon adsorption.  相似文献   

4.
Reactions of Al(III) at the interface between SiO2(s) and aqueous solution were characteristically and quantitatively studied using electrophoretic methods and applying a surface complexation/precipitation model (SCM/SPM). The surface and bulk properties of Al(III)/SiO2 suspensions were determined as functions of pH and initial Al(III) concentration. Simulated modeling results indicate that the SCM, accounting for the adsorption mechanism, predicts sorption data for low surface coverage only reasonably well. Al(III) hydrolysis and surface hydroxide precipitation must be invoked as the Al(III) concentration and/or pH progressively increase. Accordingly, the three processes in the Al(III) sorption continuum, from adsorption through hydrolysis to surface precipitation, could be identified by the divergence between the SCM/SPM predictions and the experimental data. SiO2(s) suspensions with low Al(III) concentrations (1 x 10(-4) and 1 x 10(-5) M) exhibit electrophoretic behavior similar to that of a pure SiO2(s) system. In Al(III)/SiO2 systems with high Al concentrations of 1 x 10(-3), 5 x 10(-3) and 1 x 10(-2) M, three charge reversals (CR) are observed, separately representing, in order of increasing pH, the point of zero charge (PZC) on the SiO2 substrate (CR1), the onset of the surface precipitation of Al hydroxide (CR2), and at a high pH, the PZC of the Al(OH)3 coating (CR3). Furthermore, in the 1 x 10(-3) M Al(III)/SiO2(s) system, CR2 is consistent with the modeling results of SCM/SPM and provides evidence that Al(III) forms a surface precipitate on SiO2(s) at pH above 4. SiO2(s) dissolution was slightly inhibited when Al(III) was adsorbed onto the surface of SiO2(s), as compared to the dissolution that occurs in a pure SiO2(s) suspension system. Al hydroxide surface precipitation dramatically reduced the dissolution of SiO2(s) because the Al hydroxide passive film inhibited the corrosion of the SiO2(s) surface by OH- ions.  相似文献   

5.
The well-defined structure of lipid A-diphosphate in aqueous solutions provides a way of observing the formation of calcium carbonate crystals. The crystals are either tetrahedral or rhombohedral calcite at a volume fraction of phi = 5.4 x 10 (-4) at pH 5.8 or the vaterite polymorph of CaCO(3) at a volume fraction of phi = 7.8 x 10 (-4) at pH 5.8. In both cases, nucleation, adsorption pH, and the shape-dependent template of lipid A-diphosphate control the formation of the calcite and vaterite.  相似文献   

6.
An extensive study on the effect of temperature on interfacial adsorption of Cr(VI) on wollastonite has been carried out. Adsorption on the wollastonite surface increased from 69.5 to 91.7% by increasing the temperature from 30 to 50 degrees C under optimum conditions. Kinetic modeling of the process of adsorption of Cr(VI) was done and various parameters were determined. The process follows a first-order kinetic equation and the rate of uptake was found to be 2.40x10(-2) min(-1) at 30 degrees C, 2.5 pH, 0.5x10(-4) M Cr(VI) concentration, and 0.01 M NaClO(4) ionic strength. Kinetic and equilibrium modeling of the process of adsorption was undertaken and the equilibrium parameters were determined. The process of adsorption follows pore diffusion and the value of the rate constant of pore diffusion was found to be 5.00x10(-3) mg g(-1) min(-1/2) at 30 degrees C and optimum conditions. The values of the coefficient of mass transfer, beta(L), were determined at different temperatures. Thermodynamic studies of the removal process were performed. The study suggests that the process is a typical example of endothermic adsorption. Copyright 2001 Academic Press.  相似文献   

7.
This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.  相似文献   

8.
The adsorption isotherms at 25, 45, and 65 degrees C of molybdenum solutions of concentration ranges between 10(-3) and 3x10(-2) M(Mo) (pH 4-5) on different alumina samples are investigated. The analysis is conducted using a modified Frumkin isotherm which takes a more realistic account of the lateral interaction between adsorbed species and considers that the adsorption takes place on the most basic OH groups on the surface of alumina. The results are discussed in view of the difference in solutions speciation, and the changes in the pH of the remaining supernatant solutions. The solution temperature, PZC of the used aluminas, the configuration of the basic OH groups on their surface, and the pore structure have been shown to intervene effectively. Copyright 2000 Academic Press.  相似文献   

9.
This study describes the simultaneous determination of phosphonate, phosphate, and diphosphate by CE with direct UV detection, based on in-capillary complexation with Mo(VI). When a mixture of phosphonate, phosphate, and diphosphate was injected into a capillary containing 3.0 mM Mo(VI), 0.05 M malonate buffer (pH 3.0) and 45% v/v CH3CN, three well-defined peaks, due to the migration of the corresponding polyoxomolybdate anions, were separated. The respective calibration graphs were linear in the concentration range of 2 x 10(-6)-2 x 10(-4) M for phosphonate, 1 x 10(-6)-5 x 10(-5) M for phosphate, and 1 x 10(-6)-2 x 10(-4) M for diphosphate; the correlation coefficients were better than 0.9990. The present CE method is successfully applied to the simultaneous determination of phosphonate, phosphate, and diphosphate in tap water.  相似文献   

10.
11.
12.
The effect of temperature and pH on the zeta potential of alpha-Al2O3 and adsorption of fluoride ions at the alpha-Al2O3/aqueous solution interface has been investigated through electrophoretic mobility measurements and adsorption studies, to delineate mechanisms involved in the removal of fluoride ions from water using alumina as adsorbent. When the temperature increases from 10 to 40 degrees C, the pH of the point of zero charge (pH(pzc)) shifts to smaller values, indicating proton desorption from the alumina surface. The pH(pzc) increases linearly with 1/T, which allowed estimation of the standard enthalpy change for the surface-deprotonation process. Fluoride ion adsorption follows a Langmuir-type adsorption isotherm and is affected by the electric charge at the alpha-Al2O3/aqueous solution interface and the surface density of hydroxyl groups. Such adsorption occurs through an exchange between fluoride ions and surface-hydroxyl groups and it depends on temperature, pH, and initial fluoride ion concentration. At 25 and 40 degrees C, maximum fluoride adsorption density takes place between pH 5 and 6. Increasing the temperature from 25 to 40 degrees C lowers the adsorption density of fluoride.  相似文献   

13.
The effect of L-serine in supersaturated solutions of calcium phosphate was investigated under plethostatic conditions. The rates of crystal growth measured in the presence of L-serine at relatively high concentrations and in the range between 2x10(-3) and 1x10(-2) mol dm(-3) were appreciably reduced. The inhibitory effect of L-serine was found to be due to blocking of a portion of the active growth sites by adsorption. Kinetics measurements in the presence of L-serine as well as adsorption isotherm analysis suggested Langmuir-type adsorption of L-serine on the surface of hydroxyapatite (HAP) with a relatively low affinity for the substrate. Adsorption experiments showed that at pH 7.4 considerable adsorption of L-serine onto HAP takes place, whereas at pH 10.0 the adsorption was negligible, suggesting that electrostatic interactions are dominant. Attraction between the positively charged protonated amino group of the L-serine molecule and the negatively charged HAP surface contributed largely to the adsorption. This was corroborated by the fact that, in the presence of L-serine in the solution, a significant shift of zeta-potential of the HAP particles to less negative values was found at pH values close to 7.4. At pH values higher than 10.0 essentially no shift of zeta-potential takes place. On the basis of the experimental results, a model was proposed according to which L-serine absorbs on the surface of HAP through electrostatic attractions exerted between one negative site of the HAP surface, i.e., phosphate or hydroxyl ion, and the positively charged protonated amino group of one L-serine molecule, forming a surface ion pair. Copyright 2001 Academic Press.  相似文献   

14.
首次用激光产生的第二谐振光(SHG)检测到金属/水溶液界面上阴离子在多晶铜电极表面上的吸附,阴离子吸附特性对SHG强度影响明显,由多晶铜电极在(0.5-x)mol/L NaClO_4+xmol/L NaBr溶液中的SHG强度-电位曲线表明铜电极表面对ClO_4~-的吸附非常弱,对Br~-有特定的吸附,SHG强度随Br~-浓度增加而增强,结果表明SHG是定量研究电化学界面区吸附特性的灵敏有效的探针,可揭示金属与吸附质间相互作用的本质。  相似文献   

15.
The adsorption of Co2+ ions from nitrate solutions using iron oxide nanoparticles of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) has been studied. The adsorption of Co2+ ions on the surface of the particles was investigated under different conditions of oxide content, contact time, solution pH, and initial Co2+ ion concentration. It has been found that the equilibrium can be attained in less than 5 min. The maximum loading capacity of Fe3O4 and gamma-Fe2O3 nanoparticles is 5.8 x 10(-5) and 3.7 x 10(-5) mol m(-2), respectively, which are much higher than the previously studied, iron oxides and conventional ion exchange resins. Co2+ ions were also recovered by dilute nitric acid from the loaded gamma-Fe2O3 and Fe3O4 with an efficiency of 86 and 30%, respectively. That has been explained by the different mechanisms by including both the surface and structural loadings of Co2+ ions. The surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles has been found to have the same mechanism of ion exchange reaction between Co2+ in the solution and proton bonded on the particle surface. The conditional equilibrium constants of surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles have been determined to be log K=-3.3+/-0.3 and -3.1+/-0.2, respectively. The structural loading of Co2+ ions into Fe3O4 lattice has been found to be the ion exchange reaction between Co2+ and Fe2+ while that into gamma-Fe2O3 lattice to fill its vacancy. The effect of temperature on the adsorption of Co2+ was also investigated, and the value of enthalpy change was determined to be 19 kJ mol(-1).  相似文献   

16.
The surface sorption of Cm(III) onto aqueous suspensions of alumina is investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The experiment is performed under an Ar atmosphere at an ionic strength of 0.1 M NaClO(4). The pH is varied between 2 and 10 and the metal ion concentration between 2.7x10(-8) and 4.5x10(-5) mol/L. With increasing pH, two Cm(III)-alumina surface species are identified which are attributed to identical withAl-O-Cm(2+)(H(2)O)(5) and identical withAl-O-Cm(+)(OH)(H(2)O)(4). The two curium-alumina surface complexes are characterized by their emission spectra (peak maxima at 601.2 nm and 603.3 nm, respectively) and fluorescence emission lifetime (both 110&mgr;s). In the concentration range investigated, the surface complex formation is not dependent on the metal ion concentration but only on the pH. Additionally, the concentration ratio of the two surface species is found to be independent of the metal ion concentration. No spectroscopic evidence for the presence of "strong" and "weak" sites can be found at different surface coverages. Copyright 2001 Academic Press.  相似文献   

17.
In 0.1 mol/l KH(2)PO(4)-Na(2)HPO(4) (pH 7.80) buffer solution, the potential of zero charge (PZC) and the open circuit potential of gold-coated silicon were determined to be about -0.6 and +0.10 V (vs SCE), respectively. The open circuit potential was higher than the PZC, which indicated that the surface of the gold-coated electrode had a positive charge. The ellipsometry experiment showed that the adsorption of fibrinogen onto the gold-coated silicon wafer surface arrived at a saturated state when the adsorption time exceeded 50 min. The percentage of surface without adsorbed protein, theta, was about 63%. This means that the proportion of surface actually occupied by fibrinogen was only about 37% after the adsorption arrived at saturation. The solution/protein capacitance value was determined in an impulse state around -0.59 V (vs SCE) and was stable (4.2x10(-5) F) at other potentials.  相似文献   

18.
The kinetics of single and multicomponent adsorption of deamidated monoclonal antibody (mAb) charge variants is investigated using confocal laser scanning microscopy for two commercial cation exchangers, one with an open macroporous structure--UNOsphere S--and the other with charged dextran grafts--Capto S. Markedly different intraparticle concentration profiles are obtained, being very sharp for UNOsphere S, indicating pore diffusion control, but much more diffuse for Capto S, consistent with a solid or surface diffusion mechanism. For single-component adsorption, the mAb effective pore diffusivities for UNOsphere S are approximately D(e)=4.5×10(-8) and 8.3×10(-8) cm(2)/s at pH 5 and 7.5, respectively, while effective solid diffusivities for Capto S are D(s)=0.98×10(-9) and 5.0×10(-9) cm(2)/s at pH 5 and 7.5, respectively. Two-component adsorption at pH 7.5, where the deamidated variants are bound selectively also showed markedly different profiles for the two matrices. UNOsphere S showed distinct adsorption zones within the particles indicating that multicomponent transport occurs with continuous displacement of the more deamidated variant by the less deamidated one. Capto S, however, showed no spatial resolution of the variants within the particle during co-adsorption and very slow mass transfer during sequential adsorption suggesting that protein counter-diffusion is severely hindered in this material.  相似文献   

19.
A field theoretic variational approach is introduced to study ion penetration into water-filled cylindrical nanopores in equilibrium with a bulk reservoir [S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. Lett. 105, 158103 (2010)]. It is shown that an ion located in a neutral pore undergoes two opposing mechanisms: (i) a deformation of its surrounding ionic cloud of opposite charge, with respect to the reservoir, which increases the surface tension and tends to exclude ions from the pore, and (ii) an attractive contribution to the ion self-energy due to the increased screening with ion penetration of the repulsive image forces associated with the dielectric jump between the solvent and the pore wall. For pore radii around 1 nm and bulk concentrations lower than 0.2 mol/l, this mechanism leads to a first-order phase transition, similar to capillary "evaporation," from an ionic-penetration state to an ionic-exclusion state. The discontinuous phase transition exists within the biological concentration range (~0.15 mol/l) for small enough membrane dielectric constants (ε(m) < 5). In the case of a weakly charged pore, counterion penetration exhibits a nonmonotonic behavior and is characterized by two regimes: at low reservoir concentrations or small pore radii, coions are excluded and counterions enter the pore to enforce electroneutrality; dielectric repulsion (image forces) remain strong and the counterion partition coefficient decreases with increasing reservoir concentration up to a characteristic value. For larger reservoir concentrations, image forces are screened and the partition coefficient of counterions increases with the reservoir concentration, as in the neutral pore case. Large surface charge densities (>2 × 10(-3) e/nm(2)) suppress the discontinuous transition by reducing the energy barrier for ion penetration and shifting the critical point toward very small pore sizes and reservoir concentrations. Our variational method is also compared to a previous self-consistent approach and yields important quantitative corrections. The role of the curvature of dielectric interfaces is highlighted by comparing ionic penetration into slit and cylindrical pores. Finally, a charge regulation model is introduced in order to explain the key effect of pH on ionic exclusion and explain the origin of observed time-dependent nanopore electric conductivity fluctuations and their correlation with those of the pore surface charge.  相似文献   

20.
Kinetics of adsorption of p-hydroxy benzoate and phthalate on hematite-electrolyte interface were investigated at a constant ionic strength, I = 5 x 10(-4) mol dm(-3), pH 5 and at three different temperatures. The state of equilibrium for the adsorption of p-hydroxy benzoate onto hematite surfaces was attained at 70 h, whereas it was 30 h for phthalate-hematite system. None of the three kinetics models (Bajpai, pseudo first order and pseudo second order) is applicable in the entire experimental time period; however, the pseudo second order kinetics model is considered to be better than the pseudo first order kinetics model in estimating the equilibrium concentration both the p-hydroxy benzoate-hematite and phthalate-hematite systems. The variation of adsorption density of p-hydroxy benzoate and phthalate onto hematite surfaces as a function of concentration of adsorbate was studied over pH range 5-9 at a constant ionic strength, I = 5 x 10(-4) mol dm(-3) and at constant temperature. The adsorption isotherms for both the systems were Langmuir in nature and the maximum adsorption density (Gamma(max)) of p-hydroxy benzoate is approximately 1.5 times more than that of phthalate on hematite at pH 5 and 30 degrees C in spite of an additional carboxylic group at ortho position in phthalate. This is due to the more surface area coverage by phthalate than that of p-hydroxy benzoate on hematite surface. The activation energy was calculated using Arrhenius equation and the activation energy for adsorption of p-hydroxy benzoate at hematite-electrolyte interface is approximately 1.8 times more than that of phthalate-hematite system. The negative Gibbs free energy indicates that the adsorption of p-hydroxy benzoate and phthalate on hematite surfaces is favourable. The FTIR spectra of p-hydroxy benzoate and phthalate after adsorption on hematite surfaces were recorded for obtaining the bonding properties of adsorbates. The phenolic nu(CO) appears at approximately 1271 cm(-1) after adsorption of p-hydroxy benzoate on hematite surfaces, which shifted by 10 cm(-1) to higher frequency region. The phenolic group is not deprotonated and is not participating in the surface complexation. The shifting of the nu(as)(COO-) and nu(s)(COO-) bands and non-dissolution of hematite suggest that the p-hydroxy benzoate and phthalate form outer-sphere surface complex with hematite surfaces in the pH range of 5-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号