首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 953 毫秒
1.
空间碎片在撞击航天器防护结构时会产生碎片云,而碎片云又将对航天器造成二次损伤,因此很有必要针对不同形状的空间碎片超高速撞击产生的二次碎片云特性进行研究。选取航空材料Al 2017-T4、Al 2A12作为弹丸和防护屏材料,采用非线性动力学分析软件AUTODYN-2D结合光滑质点流体动力学方法,对不同长径比的锥形弹丸分别以锥底和锥尖超高速正撞击单层防护屏薄板所产生的碎片云特性进行数值模拟,得到了碎片云的前端轴向速度、径向直径、轴向长度及穿孔直径等特性参数随弹丸撞击部位及长径比变化的规律。  相似文献   

2.
为了掌握带防护屏的航天器结构受空间碎片超高速撞击时的声发射信号特征,利用二级轻气炮发射球形弹丸撞击铝合金双层板结构,获取了碎片云撞击铝合金板舱壁产生的声发射信号,并利用小波包技术和能量熵理论对信号进行了分析。实验结果表明:弹丸初始速度、防护屏厚度及弹丸直径是决定二次碎片云形态及声发射信号特征的重要因素;在本实验工况范围内,小波包能量熵值能够描述声发射信号频率的复杂程度;当弹丸初始速度处于破碎段(3~7km/s)时,随着初始速度的增大,二次碎片云进一步细化,撞击产生的声发射信号幅值趋于减小、频率成分趋于复杂化,其小波包能量熵值逐渐增大;防护屏厚度对声发射信号的小波包能量熵值影响较大,弹丸直径对其影响较小。研究结果有助于实现对碎片云撞击舱壁结构的损伤模式识别。  相似文献   

3.
铝球弹丸高速正撞击薄铝板穿孔研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 低地球轨道上的航天器易受到微流星体及空间碎片的超高速撞击,导致其严重的损伤甚至灾难性的失效。撞击损伤特性研究是航天器防护设计的一个重要问题。通过铝球弹丸超高速正撞击薄铝板的实验研究和数值模拟,证明了AUTODYN-2D软件数值模拟预测薄铝板超高速撞击穿孔直径的有效性。通过对弹丸直径、弹丸撞击速度和薄铝板厚度影响薄铝板超高速撞击穿孔直径的数值模拟,以及利用实验结果和数值模拟结果拟合的曲线,得到了铝球弹丸超高速撞击薄铝板的穿孔规律以及影响薄铝板超高速撞击穿孔直径的主要因素。  相似文献   

4.
弹丸超高速撞击防护屏碎片云数值模拟   总被引:12,自引:0,他引:12       下载免费PDF全文
 低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击。这些撞击损伤航天器飞行的关键系统,进而导致航天器发生灾难性失效。为了保证航天员的安全及航天器的正常运行,微流星体及空间碎片防护结构设计是航天器设计的一个重要问题。采用AUTODYN软件进行了弹丸超高速正撞击及斜撞击防护屏所产生碎片云的SPH法数值模拟,给出了二维及三维模拟结果;研究了防护屏厚度、弹丸形状、撞击速度以及材料模型等对碎片云的影响。模拟结果同高质量实验研究的结果进行了比较,模拟的碎片云形状和碎片云特征点的速度同实验相吻合。验证了数值模拟方法的有效性。  相似文献   

5.
超高速撞击下钛基复合材料动力学行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 基于已有的铝合金超高速撞击实验研究结果,采用动力分析软件,对铝球撞击铝板进行了数值模拟,验证了数值模拟结果的可靠性,进而对铝防护屏以及与铝防护屏质量相同的钛基复合材料(TMC)防护屏进行了5.52、7.00、和8.00 km/s速度下的超高速撞击模拟,分别对直径为5.02 mm的铝球以及质量等同于铝球的钛基复合材料球做了3种速度下撞击铝屏和钛基复合材料防护屏的数值模拟。通过数值模拟研究可以看出,随着撞击速度的增加,钛基复合材料防护屏的防护效果优于铝防护屏;速度不变,钛基复合材料防护屏防护钛基复合材料球撞击的效果好,铝防护屏防护铝球撞击的效果好。通过超高速撞击模型分析可知,钛基复合材料防护屏的防护效果优于铝防护屏。  相似文献   

6.
 为了研究空间碎片对航天器防护结构的高速斜撞击损伤特性,采用二级轻气炮发射铝球弹丸,对铝Whipple防护结构进行高速斜撞击实验。弹丸直径为3.97 mm,撞击速度为1.14~5.35 km/s,撞击角度为0°~70°。实验得到了铝Whipple防护结构在不同撞击速度区间的后板损伤模式,分析了后板撞击损伤及弹坑分布特性,建立了预测铝球弹丸高速斜撞击铝Whipple防护结构时后板弹坑分布的经验公式。结果表明:在大角度斜撞击条件下,对于一定的撞击速度,铝Whipple防护结构的后板弹坑分布会出现两个区域;弹丸的撞击破碎临界速度将影响后板损伤随撞击角的变化关系;对于铝Whipple防护结构,存在使后板撞击损伤最严重的临界撞击角。  相似文献   

7.
 通过对铝Whipple防护结构进行扩展变形,设计出不锈钢网/铝板组合多冲击防护屏,并利用二级轻气炮对其进行高速撞击实验,撞击速度为3.93~4.25 km/s,弹丸直径为6.35 mm。分析了不同规格不锈钢网、不同间距组合以及网格间结膜对不锈钢网/铝板多冲击防护屏高速撞击防护性能的影响。结果表明:不锈钢网位于防护屏的最后层有利于碎片云的扩散;不锈钢网位于防护屏最前层不利于撞击粒子的初次破碎;丝网几何参数、防护层间距组合是提高不锈钢网/铝板多冲击防护屏高速撞击防护性能的重要参数;网格间结膜有助于弹丸撞击动能的吸收。  相似文献   

8.
在弹道段撞击速度范围内,针对玄武岩纤维布/铝板组合防护结构开展了高速撞击实验(实验使用的2017铝球弹丸的直径为3.97 mm,撞击速度为1.49~3.65 km/s),获得了防护结构的弹道极限速度,分析了铝球弹丸高速击穿玄武岩纤维布和铝板后的剩余速度。基于单层铝板发生穿孔失效时的临界撞击动能,研究了玄武岩纤维布/铝板组合防护结构的高速撞击防护性能。结果表明:当弹丸未破碎时,相同直径的铝球弹丸以不同速度击穿相同面密度的玄武岩纤维布后的速度减小量近似为常数;铝球弹丸直径越大,弹丸击穿相同面密度的玄武岩纤维布后的速度减小量越小;在防护结构面密度相同的情况下,铝板前置的玄武岩纤维布/铝板组合防护结构比玄武岩纤维布前置的组合防护结构具有更好的高速撞击防护性能。  相似文献   

9.
铝球弹丸超高速斜撞击薄铝板特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用2017铝合金球形弹丸超高速斜撞击2A12铝合金薄板,模拟空间碎片对航天器防护屏的超高速撞击作用。分析了铝合金薄板超高速斜撞击穿孔特性与弹丸滑弹返溅特性,建立了铝合金球形弹丸超高速斜撞击铝合金薄板的穿孔经验公式。弹丸撞击速度分别为2.58、3.56和4.31 km/s,撞击角度为10°~80°。实验结果表明:铝合金薄板超高速斜撞击椭圆穿孔尺寸与撞击速度和撞击角度有关,直径为3.97 mm的铝合金球形弹丸超高速斜撞击厚度为1 mm的铝合金薄板时,发生滑弹返溅的临界撞击角在30°~40°之间。最大滑弹返溅角随着撞击角的增大而逐渐减小,此时滑弹返溅碎片云的影响范围缩小,但破坏能力增强。弹丸撞击速度对铝合金薄板超高速斜撞击穿孔的椭圆度影响较小。  相似文献   

10.
利用二级轻气炮发射2017-T4铝球弹丸,高速正撞击5052铝网防护结构,模拟空间碎片对航天器防护结构的高速撞击作用,研究了铝网防护结构的高速撞击防护特性。在面密度相同的情况下,分析了影响铝网填充防护结构高速撞击防护性能的铝网尺寸效应及组合效应。实验撞击速度为2.90~4.95km/s,弹丸直径分别为3.97和6.35mm,撞击角为0°。实验结果表明:厚度为0.5mm的2A12铝板对高速撞击铝球的初次破碎能力优于相同面密度的5052铝网层,但作为填充介质,5052铝网层比2A12铝板具有更好的保护后板作用;在一定的丝径范围内,丝径越小,撞击防护效果越好;前网后板填充层比前板后网填充层具有更好的均匀破碎效果。  相似文献   

11.
 根据ORDEM2000模型和卫星标准解体模型(SBM),确定空间中真实空间碎片的典型形状和撞击姿态。利用AUTODYN仿真软件,基于碎片特征长度,对立方体、方形薄片超高速撞击产生的碎片云进行三维数值模拟,从形状、质量分布、速度分布与能量分布深入分析碎片云特性,并与通用的球形标准弹丸进行比对。结果表明:弹丸形状及撞击姿态对碎片云特性有显著影响,立方体和方形薄片弹丸角撞击时产生的毁伤能力最大,而球形弹丸最小。因此,基于标准球形弹丸获得的弹道极限方程低估了航天器遭受空间碎片撞击损伤的风险,而基于真实碎片特征长度的弹丸形状效应研究将对现行的球形弹丸弹道极限方程(或曲线)做出更合理的修正。  相似文献   

12.
弹丸超高速撞击铝靶成坑数值模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
 低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击,损伤航天器飞行关键系统,进而导致航天器发生灾难性的失效。微流星体及空间碎片防护结构设计,是航天器设计的一个重要问题。采用AUTODYN软件进行了弹丸超高速正撞击及斜撞击铝靶成坑的数值模拟,给出了二维及三维模拟结果。研究了弹丸密度、弹丸形状、板厚度、弹丸速度、弹丸直径和弹丸撞击入射角等对靶成坑的影响。模拟结果同实验结果进行了比较,模拟的成坑形状和特征尺寸同实验相吻合。验证了数值模拟方法的有效性。  相似文献   

13.
超高速撞击产生碎片云相分布数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
空间碎片与航天器的撞击速度通常大于10 km/s,这种速度条件下撞击过程的物理特点是高温、高压和高应变率,同时伴随着熔化、汽化及等离子体等相变问题发生。利用AUTODYN/SPH的二次开发功能,在程序中嵌入Sesame状态方程数据库和铝材料的相图,数值模拟出撞击速度为5.0和5.6 km/s时的防护屏穿孔直径分别为9.02 mm和9.34 mm,计算结果与实验结果符合较好,说明物理建模及参数的选取合理,同时也验证了数值模拟方法的正确性及有效性。通过计算给出碎片云的热力学量压力和温度分布,结合铝的相图,对超高速撞击产生碎片云的相分布进行了初步计算,给出了碎片云中固、液、气相的分布范围。  相似文献   

14.
 针对空间碎片超高速撞击充气压力容器问题,应用非线性动力学分析软件AUTODYN-2D,采用SPH方法对碎片云在高压气体中的运动特性进行了数值模拟研究。在建模过程中,分析比较了材料状态方程对数值模拟结果的影响,并通过与实验结果的比较,选取了适合该问题的状态方程,验证了数值模拟方法的有效性。结果表明:由于容器内压气体的存在,碎片云运动发生减速,并且碎片云的轴向扩展速度相对于碎片云的径向扩展速度减速较慢;高速撞击产生的碎片云与容器内的高压气体发生了强烈的相互作用,碎片云尖端产生的钉状物及高压气体中产生的冲击波是控制容器在撞击后发生进一步破坏的两个重要因素。  相似文献   

15.
 采用高强纤维作为防护材料,是航天器空间碎片超高速撞击防护结构发展的趋势之一。超高速撞击损伤分析是空间碎片防护结构研究开发设计的重要环节,也是高压极端加载条件下材料动态响应分析的重要内容。玄武岩纤维是近年来受到人们关注的一种高强度、高模量陶瓷纤维。利用二级轻气炮进行了铝合金弹丸超高速撞击玄武岩纤维编织布时的超高速撞击实验,根据弹丸碎片的闪光X射线阴影照片,分析了铝合金弹丸超高速撞击玄武岩纤维编织布的撞击速度损失规律,根据实验结果拟合得到了铝合金弹丸的剩余速度方程,为分析玄武岩纤维材料对弹丸的撞击能量消耗提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号