首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
土壤中氮元素的快速检测在现代农业中有重要意义,传统方法前处理复杂不适合现场快速检测。激光诱导击穿光谱法已被证明可以用来对土壤中的元素进行检测,但对于土壤中的氮元素检测,如何规避大气环境中氮气的影响是不可回避的问题。提出了一种基于激光诱导击穿光谱法的空气中土壤全氮检测方法,通过对不同土壤标准样品的CN(388.3nm)分子特征谱线对比分析并建立了分析模型,结果显示,可以很好地规避大气中氮元素的影响,其检出限小于0.14%。对比于N(746.8nm)处的原子特征峰在空气中和氩气中的分析结果,其优势非常明显。  相似文献   

2.
LIBS技术在土壤重金属污染快速测量中的应用   总被引:7,自引:0,他引:7  
激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)作为一种很有前景的分析和测量技术在过去的10多年中已经显现出来.本文介绍了激光诱导击穿光谱的工作原理和定量定性分析的理论基础,综述了LIBS技术在土壤重金属As、Cd、Cr、Hg、Pb 和Zn等污染快速测量中的应用和仪器研究进展,分析了LIBS应用在该领域中存在的主要问题,对未来基于LIBS快速检测土壤重金属污染需要解决的定量测量和检测限等关键问题进行了探讨.  相似文献   

3.
我国当前主要能源仍是煤炭资源,煤质快速检测有利于其清洁高效利用。激光诱导击穿光谱(Laser-Induced Breakdown Spectroscopy,LIBS)作为一种快速光谱检测技术,具有样品需求量小、制样简便、可多元素同时测量等优点,其在煤质快速检测中的应用潜力已得到广泛认可。本文从激光诱导击穿光谱仪器(实验室台式、在线式和便携式)的研发现状、激光诱导击穿光谱对煤质(金属元素、非金属元素和工业指标)的检测现状、煤质分析性能提升方法,以及激光诱导击穿光谱定量分析模型研究等方面介绍了近几年来LIBS技术在煤质检测中的应用现状及未来展望。  相似文献   

4.
中药材重金属元素快速检测对污染监控及人们健康具有重要意义。激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy, LIBS)属于一种快速检测方法,研磨压片等预处理方法相对样品消解已有所简化,但破坏了样品的物理性质,且不能满足中药材大宗品种、大批量检测需求。若进一步简化样品预处理,将更加凸显LIBS快速检测的优势。本文建立了激光诱导击穿光谱技术(LIBS)快速微损检测中药材样品重金属元素定标方法。线性相关系数R2为0.7764,建立的微损定标曲线线性可用于切片党参LIBS快速检测,对待测党参切片样品检测平均相对误差为3.74%,与电感耦合等离子体质谱法(ICP-MS)对比,相关系数R2为0.7957,验证了LIBS技术微损检测的可行性。制备的党参参考定标样品可多次重复用于待测样定标和仪器标定等。实验对待测党参样品仅进行切片处理,避免了研磨、压片等预处理,更加充分地体现LIBS快速检测的优势,为LIBS技术应用于中药材重金属元素快检等领域提供了一种新方法。  相似文献   

5.
重金属是农产品、农田土壤、肥料、饲料等农业样品中的重要污染物,传统的实验室分析方法需繁琐的前处理,耗时费力,无法满足重金属的快速检测需求。固体进样元素分析技术具有简化样品前处理、便捷、绿色、高效等优势,在农业领域中元素的快速检测分析中具有良好的应用前景。通过对固体进样元素分析技术,包括样品导入技术和电热蒸发、电感加热、激光烧蚀、X射线荧光光谱、激光诱导击穿光谱等固体进样分析系统进行综述,并对这些技术在农业领域中的应用做了进一步的梳理。固体进样分析技术已在农业样品中元素的快速检测、现场监测、风险评估等工作中发挥着举足轻重的作用,相信随着仪器研发、材料科学、机器学习等新兴技术的快速发展,其结构小巧、使用简单、分析迅速等优势将会充分发挥,为农业领域中质量安全监管提供一种更为有效、可靠的快速检测手段。  相似文献   

6.
激光诱导击穿光谱(Laser-induced breakdown spectroscopy, LIBS)技术利用激光实现对分析样品的快速原位剥蚀和光谱激发,是一种具有广阔应用前景的分析手段,尤其是在现场、原位分析中优势明显,快速原位的分析特点符合未来分析仪器的发展方向.近年来基于该技术开展各类仪器研发的相关工作,引起广大研究者的极大关注.本文综述了激光诱导击穿光谱仪器中关键部件的组成及发展,从便携式、手持式及远程系统三个方面综述了各类现场应用仪器的研发进展,并对未来发展方向进行了展望.  相似文献   

7.
激光诱导击穿光谱作为一种新兴的元素分析技术,具有实时在线、非接触、多元素同时检测等优点,是光谱分析领域内的一种前沿性分析手段.然而,如何从复杂大量的激光诱导击穿光谱数据提取有用信息,提高其定性、定量分析准确度是激光诱导击穿光谱技术目前面临的难题.化学计量学作为多学科交叉的化学分支学科,在数据处理、信号解析和模式识别等方面具有优势,能够解决传统化学研究方法难以解决的一些复杂问题.本文从光谱数据预处理、定性和定量分析三方面综述了近年来化学计量学方法在激光诱导击穿光谱中的研究进展.  相似文献   

8.
铀矿是核领域最重要的矿产资源之一,快速、有效勘探铀矿资源能促进核领域平稳、健康发展。激光诱导击穿光谱(LIBS)技术具备多目标元素现场快速检测的优点,能实现铀矿资源准确、快速的现场分析。本工作基于LIBS技术对铀矿中U元素进行了定量分析,对比了偏最小二乘(PLS)和随机森林(RF)两种机器学习算法的定量效果。结果显示,RF模型的定量线性相关系数为0.996,对三个验证集的相对误差分别是22.33%、12.79%和12.04%;PLS模型的定量线性相关系数为0.997,对三个验证集的相对误差分别是4.33%、6.63%和6.85%。对比结果表明,本研究中的PLS模型定量准确度更高,同RF算法相比,PLS算法更适用于铀矿中U的LIBS定量分析。  相似文献   

9.
在有源发光玻璃的制备过程中,通常需要掺杂微量元素,用于改善玻璃的发光性能,因此在生产过程中进行快速检测非常重要.本实验针对激光诱导击穿光谱技术(LIBS)分析玻璃中微量元素灵敏度不足的问题,利用激光诱导荧光辅助激光诱导击穿光谱技术(LIBS-LIF)检测了玻璃中3种微量元素Yb,Al和P.使用波长可调谐激光激发等离子体中的Yb+离子、Al原子和P原子,并对这3种粒子在激光诱导荧光中的跃迁过程进行了分析.结果表明,通过激光诱导荧光辅助激光诱导击穿光谱技术,Yb+离子、Al原子和P原子的光谱强度分别增强了23,50和8倍,大幅度提高了LIBS分析的灵敏度.  相似文献   

10.
杨春  贾云海  陈吉文  李冬玲  刘佳  张勇 《分析化学》2014,(11):1623-1628
激光诱导击穿光谱( LIBS)不仅可以对材料整体成分进行分析,还可进行微区及成分分布分析。本实验采用激光诱导击穿光谱对两牌号钢铁样品进行扫描分析,尝试对34CrNiMo6钢中的MnS夹杂物和重轨钢中的Si-Al-Ca-Mg复合夹杂物进行表征。结果表明,34CrNiMo6钢中元素信号的二维强度分布及元素通道合成后,个别位置Mn及S两元素的信号强度同时异常高,可确定试样中存在较多MnS夹杂物;重轨钢中元素的二维强度分布及元素通道合成后,个别位置Si、Ca、Mg及Al元素的信号同时异常高,可确定试样中存在Si-Al-Ca-Mg复合夹杂物。采用扫描电子显微镜/能谱法( SEM/EDS)对上述样品中夹杂物的对比分析结果表明,两种方法对夹杂物类型的判定结果一致。  相似文献   

11.
A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey’s post hoc test and Student’s t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.  相似文献   

12.
建立了自动消解仪消解-电感耦合等离子体原子发射光谱法(ICP-OES)同时测定水系沉积物中Cu,Zn,Ni,Cr,Pb,Co 6种元素含量的方法。方法中6种元素的检出限为0.000 2~0.02mg/L,工作曲线的相关系数均大于0.999。方法经国家标准物质(GBW07361)验证,准确度和精密度均能达到环境监测分析的要求,为水系沉积物中重金属元素含量的测定提供了简单可靠的分析方法。  相似文献   

13.
Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils.  相似文献   

14.
In the present work, a model of double pulse laser-induced breakdown spectroscopy (LIBS) spectrometer has been developed and results from two different applications of double pulse LIBS for solving the problems of environmental interest are presented. In one case, laser induced breakdown spectroscopy has been applied to the determination of heavy and toxic metals (lead) in soil samples. In the second case, laser induced breakdown spectroscopy was used in preliminary experiments for the detection of sulfur content in coal, and on the basis of spectral features, ways to improve the sensitivity of laser induced breakdown spectroscopy detection of sulfur are proposed. The detection limit for lead in soil was estimated to be approximately 20 ppm that is lower than the regulatory standards for the presence of lead in soil.  相似文献   

15.
To perform fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy (LIBS) based on only one single-pulse laser system, a wood slice has been used as a liquid absorber to transform liquid sample analysis to solid sample analysis using LIBS. High detection sensitivity and good reproducibility can be achieved with this approach. Calibration curves for five metal elements, Cr, Mn, Cu, Cd, and Pb under trace concentrations, have been obtained, and the limits of their detection were determined to be in the range of 0.029–0.59 mg L− 1, 2–3 orders better than those obtained by directly analyzing liquid samples where the laser was focused on a liquid surface. The wood slice was very easy to handle and thus, the whole analysis process took only 4–5 min for each sample. This approach provides a more practical approach for fast and sensitive metal element analysis in aqueous solutions using LIBS, which is especially useful for monitoring toxic heavy metals in water.  相似文献   

16.
The concept of utilizing laser-induced breakdown spectroscopy (LIBS) technology for landmine detection and discrimination has been evaluated using both laboratory LIBS and a prototype man-portable LIBS systems. LIBS spectra were collected for a suite of landmine casings, non-mine plastic materials, and ‘clutter-type’ objects likely to be present in the soil of a conflict area or a former conflict area. Landmine casings examined included a broad selection of anti-personnel and anti-tank mines from different countries of manufacture. Other materials analyzed included rocks and soil, metal objects, cellulose materials, and different types of plastics. Two ‘blind’ laboratory tests were conducted in which 100 broadband LIBS spectra were obtained for a mixed suite of landmine casings and clutter objects and compared with a previously-assembled spectral reference library. Using a linear correlation approach, ‘mine/no mine’ determinations were correctly made for more than 90% of the samples in both tests. A similar test using a prototype man-portable LIBS system yielded an analogous result, validating the concept of using LIBS for landmine detection and discrimination.  相似文献   

17.
18.
Several elements important to planetary geology (e.g. Br, C, Cl, P, S) and the human exploration of Mars (e.g. toxic elements such as As) have strong emission lines in the purge and vacuum ultraviolet (VUV) spectral region (100–200 nm). This spectral region has not been extensively studied for space applications using geological samples. We studied emissions from the laser-induced breakdown spectroscopy (LIBS) plasma in this region using a sample chamber filled with 7 torr (930 Pa) of CO2 to simulate the Martian atmosphere. Pressures down to 0.02 torr were also used to evaluate the effect of the residual CO2 on the spectra and to begin investigating the use of VUV-LIBS for airless bodies such as asteroids and the Moon. Spectra were recorded using a 0.3-m vacuum spectrometer with an intensified CCD (ICCD) camera. The effects of time delay and laser energy on LIBS detection at reduced pressure were examined. The effect of ambient CO2 on the detection of C in soil was also evaluated. Lines useful for the spectrochemical analysis of As, Br, C, Cl, P, and S were determined and calibration curves were prepared for these elements. Although LIBS is being developed for stand-off analysis at many meters distance, the experiments reported here were aimed at in-situ (close-up) analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号