首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, from the discussion on water structure and clusters, it can be deduced that the OH stretching vibration is closely related to local hydrogen-bonded network for a water molecule, and different OH vibrations can be assigned to OH groups engaged in various hydrogen bonding. At ambient condition, the main local hydrogen bonding for a molecule can be classified as DDAA (double donor–double acceptor), DDA (double donor–single acceptor), DAA (single donor–double acceptor) and DA (single donor–single acceptor) and free OH vibrations. As for water at 290 K and 0.1 MPa pressure, the OH stretching region of the Raman spectrum can be deconvoluted into five sub-bands, which are located at 3014, 3226, 3432, 3572, and 3636 cm−1, and can be assigned to νDAA-OH, νDDAA-OH, νDA-OH, νDDA-OH, and free OH2 symmetric stretching vibrations, respectively.  相似文献   

2.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

3.
《Chemical physics letters》2006,417(1-3):206-210
Two C–O stretching hot bands, (ν1 + 2ν3)  2ν3 and (2ν1 + ν3)  (ν1 + ν3), of the CCO radical in the ground electronic state were measured. These hot bands are red shifted by approximately 70 cm−1 compared to the C–O stretching fundamental. CCO was produced in a discharge through a flowing mixture of carbon suboxide and helium. The spectra were recorded using a diode laser spectrometer. The band origins were determined to be 1904.32512(62) and 1902.69130(56) cm−1 for (ν1 + 2ν3)  2ν3 and (2ν1 + ν3)  (ν1 + ν3), respectively. The measurements in this band together with previously reported frequencies in the C–C and C–O stretching regions were analysed to determine harmonic frequencies and anharmonicity constants.  相似文献   

4.
Overtone spectra of C–H stretching vibrations of formaldehyde, acetaldehyde and n-butyraldehyde have been studied in liquid phase using conventional absorption and thermal lens techniques. The overtone bands up to Δν = 4 have been monitored using the conventional IR and NIR techniques and the band involving Δν = 7 of the C–H stretching vibration with thermal lens technique. The vibrational frequencies and the anharmonicity constants for C–H stretching vibrations of the methyl as well as of the aldehyde groups for all the three molecules have been determined using these data. We have also calculated the vibrational frequencies of fundamental bands and charge distribution on carbon and hydrogen atoms using ab initio methods and the results are compared with the experimental data.  相似文献   

5.
Infrared and Raman spectra of cubic magnesium caesium phosphate hexahydrate, MgCsPO4·6H2O (cF100), and its partially deuterated analogues were analyzed and compared to the previously studied spectra of the hexagonal analogue, MgCsPO4·6H2O (hP50). The vibrational spectra of the cubic and hexagonal dimorphic analogues are similar, especially in the regions of HOH stretching and bending vibrations. In the difference IR spectrum of the slightly deuterated analogue (<5% D), one distinctive band appears at 2260 cm−1 with a small shoulder at around 2170 cm−1, but only one band is expected in the region of the OD stretchings of isotopically isolated HDO molecules. The small weak band could possibly result from second-order transitions (a combination of HDO bending and some libration of the same species) rather than statistical disorder of the water molecules. By comparing the IR spectra in the region of external vibrations of water molecules of the protiated compound recorded at RT (room temperature) and at LNT (liquid nitrogen temperature) and those in the series of the partially deuterated analogues, it can be stated with certainty that the bands at 924 and 817 cm−1 result from librations of water molecules, rocking and wagging respectively. And the band at 429 cm−1 can be safely attributed to a stretching Mg–Ow mode. In the ν3(PO4) and ν4(PO4) region in the infrared spectra, one band in each is observed, at 995 and 559 cm−1, respectively. In the region of the ν1 modes, in the Raman spectrum of the protiated compound, one very intense band was observed at 930 cm−1 which is only insignificantly shifted to 929 cm−1 in the spectrum of the perdeuterated compound. The band at 379 cm−1 in the Raman spectrum could be assigned to the ν2(PO4) modes. With respect to the phosphate ion vibrations, the comparison between the two polymorphic forms of MgCsPO4·6H2O and their deuterated compounds shows that ν1(PO4) and ν3(PO4) appear at lower wavenumbers in the cubic phase than in the hexagonal phase. These data are in full agreement with the lower repulsion potential at the cubic lattice sites compared with that for the hexagonal lattice sites.  相似文献   

6.
The benefit of near-infrared (NIR) spectroscopy in studies of acid-treated clay minerals is demonstrated. The effects of mineral type, composition and content of non-swelling interlayers on the dissolution rate are investigated. Detailed analysis of the NIR region is performed by comparing the first overtone (2νOH) and combination (ν + δ)OH bands with the fundamental stretching (ν) and bending (ν) vibrations. Spectra of acid-treated samples show a gradual decrease in the intensities of the structural OH overtone (near 7100 cm?1) and combination (4600–4300 cm?1) bands reflecting a fewer number of octahedral atoms. The appearance of the 2νSiOH vibration for terminal (isolated) SiOH groups near 7315 cm?1 indicates the formation of a protonated silica phase. The band near 7130 cm?1 remaining in the spectra of acid-treated samples is assigned to 2νHOSiOH of geminal silanol groups. Thus the creation of geminal silanols, previously detected by 29Si MAS-NMR spectroscopy in acid-treated hectorite, is confirmed also by NIR spectroscopy. The assignment of the 4555 cm?1 band to the (ν + δ)SiOH combination enabled calculation of the wavenumber for the SiO–H bending vibration (~810 cm?1) that is not observable in the mid-IR region due to overlapping with the Si–O band of amorphous silica (~800 cm?1). The NIR spectra confirm that trioctahedral hectorite is much more susceptible to dissolution in HCl than dioctahedral nontronite. The dissolution rate of kaolinite present in the Badin clay as an admixture is lower than that of the main mineral nontronite. The accessibility of the interlayers for protons significantly influences the stability of clay minerals in HCl. Mixed-layered mineral illite/smectite with only 30% of swelling interlayers dissolves more slowly than smectite of similar chemical composition containing mainly swelling interlayers.  相似文献   

7.
A new compound, Rb4Be(SeO4)2(HSeO4)2·4H2O, crystallizes in a comparatively wide concentration range from mixed beryllium rubidium selenate solutions (from solutions containing 29.06 mass% beryllium selenate and 25.75 mass% rubidium selenate up to solutions containing 12.53 mass% beryllium selenate and 55.32 mass% rubidium selenate).Rb4Be(SeO4)2(HSeO4)2·4H2O crystallizes in the acentric orthorhombic space group Pmn21 (a = 32.607(4), b = 10.676(2), c = 6.069(1) Å, V = 2112.8 Å3, Z = 4, R1 = 0.047 for 4059 Fo > 4σ(Fo) and 311 variables). The crystal structure is composed of Be(H2O)4 tetrahedra arranged in layers at x = 0 and x = ½, alternating with broad layers built up from SeO4 and HSeO4 selenate tetrahedra and Rb cations. The beryllium–water layers are linked to the rest of the structure via hydrogen bonds only. The H2O molecules as well as the OH molecules of the acid HSeO4 groups form strong to very strong hydrogen bonds with donor–acceptor distances between 2.58 and 2.74 Å.Vibrational spectra (infrared and Raman) of Rb4Be(SeO4)2(HSeO4)2·4H2O are presented and discussed in the region of the fundamentals of both the selenate and the beryllium tetrahedra (skeleton motions) as well as in the region of the OH vibrations at ambient and liquid nitrogen temperature (LNT). The appearance of four Raman bands corresponding to ν1 of the selenate ions reflects the existence of four crystallographically different selenate tetrahedra in the structure. The spectroscopic experiments reveal that the ν1 modes of the selenate ions appear at higher frequencies than some components of ν3. Bands of an AB doublet structure (2950, 2390 cm?1) arising from the OH stretching modes of the HSeO4- ions are recognized in the infrared spectra. The appearance of two infrared bands (1308, 1250 cm?1) corresponding to δ(OH) (in-plane bending modes of the OH groups) confirms the structural data regarding the existence of two crystallographically different OH groups. The water librations are also briefly commented. The appearance of a band at a comparatively large wavenumber (1013 cm?1) corresponding to rocking librations of the water molecules indicate that strong hydrogen bonds are formed in the title compound.  相似文献   

8.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

9.
《Vibrational Spectroscopy》2001,25(2):231-251
Polarised infrared transmission (4000–400 cm−1) and Raman (3500–10 cm−1) spectra of betaine ortho-arsenic acid crystal ((CH3)3NCH2COO·H3AsO4; abbreviated as BA) were measured at various temperatures and analysed. The temperature evolution of the hydrogen bonds stretching vibrations (νOH) apparent in the polarised infrared transmission spectrum (||c axis) shows that the O(4)⋯O(4) hydrogen bonds being almost parallel to the spontaneous polarisation direction plays an important role in the ferroelectric phase transition. New experimental proofs for the deformation of the AsO4 group in H3AsO4 acid and rotation of betaine molecules related to the ordering of the hydrogen bonds at the ferroelectric phase transition were found.  相似文献   

10.
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.  相似文献   

11.
Natural berlinite from a heated sedimentary sequence in Cioclovina Cave (Romania) was studied using Raman spectroscopy complemented with infrared techniques. Vibrational data acquired at room temperature were compared with those reported for synthetic berlinite in ambient conditions. The symmetry of the (PO4)3? units is confirmed by the observation of characteristic bands attributed to the ν1(PO4)3? stretching mode, both the ν4 and ν2 bending regions at 500–595 cm?1, and 350–500 cm?1, respectively. The berlinite Raman fingerprint was unambiguously identified at 1111 and 1104 cm?1, confirming the identity of the species and elucidating some controversial reports in the mineralogy field.The vibrational data of natural berlinite relates to its crystallography, and along with the spectra–structure correlation, confirmed an almost ideal natural berlinite crystal.  相似文献   

12.
《Vibrational Spectroscopy》2007,43(1):177-183
The isotropic part of the Raman bands corresponding to NH2 bending and ν(CO) stretching modes of formamide (HCONH2) at ∼1593 and 1668 cm−1, respectively, in neat HCONH2 as well as in binary mixtures with methanol (CH3OH) were reinvestigated. Variations of their linewidths exclusively with mole fractions of HCONH2, in the range C = 0.1–0.9 were studied. The linewidth variation of the NH2 bending mode shows a departure from the trend expected on the basis of concentration fluctuation model and this has been explained using a recently suggested empirical model by invoking the concept of microviscosities of the solute, HCONH2 and the solvent, CH3OH. The other peak at ∼1668 cm−1 shows a peculiar variation of the linewidth with concentration having two minima at C = 0.8 and 0.4, which have been explained in terms of formation of hydrogen bonded complexes, NH2HCO⋯HOCH3, and NH2HCO⋯(HOCH3)2 and the two phenomena, namely motional narrowing and diffusion dynamics being simultaneously operative. The equilibrium constants have been evaluated from the spectral data and their variation with total molar concentration has been presented.  相似文献   

13.
Raman experiments of aluminum chloride and formamide (FA) solutions in different compositions and temperatures were carried out. Spectral changes provoked by the increase of the salt concentration were observed in different regions. The νCO and νCN modes of FA upon complexation were upshifted and suggest that the CONH hybrid (II) is stabilized by Al(III). Bands at 547 and 295 cm−1, which are assigned to the νAlO and νAlN vibrations, respectively, evidence coordination through both O and N atoms of FA. The quantitative analysis performed at the carbonyl stretching region found 5 FA molecules around this cation, resulting in the formation of the [Al(FA)5]Cl3 complex. Its stability is maintained by whole studied concentration range and up to around 100 °C. At higher temperatures, distortions in the FA shell begin occurring and a new component at 356 cm−1 is then observed and assigned to the [AlCl4] complex.  相似文献   

14.
A laueite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil has been studied by vibrational spectroscopy and scanning electron microscopy with EDX. Chemical formula calculated on the basis of semi-quantitative chemical analysis can be expressed as (Mn2+0.85,Fe2+0.10Mg0.05)∑1.00(Fe3+1.90,Al0.10)∑2.00(PO4)2(OH)2·8H2O.The laueite structure is based on an infinite chains of vertex-linked oxygen octahedra, with Fe3+ occupying the octahedral centers, the chain oriented parallel to the c-axis and linked by PO4 groups. Consequentially not all phosphate units are identical. Two intense Raman bands observed at 980 and 1045 cm−1 are assigned to the ν1 PO43− symmetric stretching mode. Intense Raman bands are observed at 525 and 551 cm−1 with a shoulder at 542 cm−1 are assigned to the ν4 out of plane bending modes of the PO43−. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Intense Raman bands are observed at 3379 and 3478 cm−1 and are attributed to the OH stretching vibrations of the hydroxyl units. Intense broad infrared bands are observed. Vibrational spectroscopy enables subtle details of the molecular structure of laueite to be determined.  相似文献   

15.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

16.
《Vibrational Spectroscopy》2007,43(2):387-394
The metal ion distributions at the two metal sites (hexaformate-coordinated Me1 sites and mixed-coordinated Me2 sites) in the title mixed crystals as determined by single crystal X-ray diffraction and double matrix infrared spectroscopic methods are presented and discussed. The mixed formates are isostructural with the end compounds (space group P21/c). The local metal ion concentrations as a function of the total metal ion concentrations exhibit a clear preference of Zn2+ ions to Me1 sites and the Mg2+ ions to Me2 sites.The analysis of the infrared spectra reveals that the spectral regions 2300–2500 cm−1 (νOD of matrix-isolated HDO molecules) and 1300–1400 cm−1 (symmetric COO stretching (ν2) and bending CH (ν5) modes) are mostly sensitive to the metal ion environment. The inclusion of Mg2+ and Zn2+ in the structures of Zn(HCOO)2·2H2O and Mg(HCOO)2·2H2O, respectively, leads to an appearance of new infrared bands corresponding to νOD of HDO molecules bonded to the incorporated ions (i.e. new hydrogen bonding systems MgOH2⋯OCHOZn and ZnOH2⋯OCHOMg are formed in the mixed formates). The respective new bands are observed at small concentrations of included Mg2+ ions (about 5 mol%, x = 0.05) and at considerably higher concentrations of included Zn2+ ions (about 30 mol%, x = 0.7). Contrarily, the ν2 and ν5 modes caused by the incorporated cations bonded to formate ions occur at x  0.3 and x  0.85 (Mg2+ ions in Zn(HCOO)2·2H2O and Zn2+ ions in Mg(HCOO)2·2H2O, respectively). Thus, the infrared spectroscopy experiments confirm the single crystal X-ray measurements that the Mg2+ ions are localized predominantly at Me2 sites and the Zn2+ ions at Me1 sites in the title mixed crystals. The pronounced preference of the Mg2+ ions to Me2 sites is owing to the strong affinity of these ions to water molecules.  相似文献   

17.
The vibrational (infrared and Raman) spectroscopy is used in order to identify and characterize the following amphibole minerals with general formula W0–1X2Y5Z8O22(OH)2 (W = Na, K; X = Na, Ca; Y = Mg, Fe2+, Fe3+, Al; Z = Si, Al) originating from the localities in the Republic of Macedonia: glaucophane, Na2(Mg,Fe2+)3(Fe3+,Al)2Si8O22(OH)2; tremolite–actinolite, Ca2(Mg,Fe2+)5Si8O22(OH)2; hornblende (Na,K)0–1Ca2(Mg,Fe2+,Fe3+,Al)5(Si,Al)8 O22(OH)2 and arfvedsonite, NaNa2(Mg,Fe2+)4(Fe3+,Al)Si8O22(OH)2. The chemical composition of these minerals is not necessarily fixed. It is due to the possibility to form solid solution series with other minerals being their end-members (for example, tremolite–ferro-actinolite series, Ca2Mg5Si8O22(OH)2–Ca2Fe2+5Si8O22(OH)2). In this context, it is shown that the intensity and especially the number of the IR bands in the ν(OH) region could serve as a tool for exact mineral identification. Namely, it is based on the presence of different Y cations in various octahedral sites (M1 and M3), which is manifested by different spectral view. On the other hand, the expressed similarities in the 1300–370 cm−1 (IR) and 1200–100 cm−1 regions (Raman) of the spectra are observed due to their common structural characteristics (double chains of SiO4 tetrahedra). Thus, the bands in this region are tentatively prescribed mostly to the vibrations of the SiO4 tetrahedra. The results of our study are compared with the corresponding literature data for the analogous mineral species originating all over the world.  相似文献   

18.
A new environmental cell allowing for the independent synchronous collection of the near- and mid-infrared spectra (12,000–600 cm−1) in the diffuse reflection and attenuated total reflection (ATR) modes, respectively, is reported. The cell is employed to study in real time the dehydration of the phyllosilicate mineral sepiolite, Mg8Si12O30(OH)4(OH2)4·wH2O, in both its natural form and after in situ deuteration at ambient. The spectra are obtained under dynamic purging with dry N2 and compared to those of the same material conditioned over saturated salt solutions. Sepiolite is an important industrial mineral with a modulated structure of alternating tunnels and ribbons. Its mild drying is associated with pronounced vibrational spectral changes due to the removal of surface and zeolitic H2O and the concomitant structural relaxation of the ribbons. Detailed assignments are provided for the fundamental, combination and overtone spectrum of H2O confined in the tunnels of sepiolite, SiOH groups on the external surface of the particles, and Mg3OH groups in the 2:1 ribbons. The spectra are discussed in comparison to those of palygorskite (modulated phyllosilicate with narrower ribbons and tunnels), talc (trioctahedral magnesian phyllosilicate without modulation) and high-surface area silica. It is demonstrated that sepiolite exhibits three discrete states of zeolitic hydration at ambient temperature: Besides the previously known hydrated (w = 7–8) and dry (w = 0–1) states which dominate the spectra above 30% and below 3% relative humidity, respectively, a hitherto unknown intermediate (w = 4–5) is found in the 3–10% range. The new state is most conveniently identified in the near-infrared by a ν02 Mg3O-H stretching mode at 7205 cm−1 (ν01 = 3686 cm−1, X = 83.5 cm−1) and a characteristic H2O combination band at 5271 cm−1 (D2O: 3908 cm−1).  相似文献   

19.
Poly(p-dioxanone) (PPDO) has been blended with poly(vinyl phenol) (PVPh) and the PPDO/PVPh blends have been investigated using DSC, FTIR and POM. According to the single Tg criterion, miscibility has been found in the whole composition range for the blends obtained by solvent casting from dioxane solutions. The dependence of the Tg on composition shows negative deviation from the Fox equation. The interaction parameter, obtained from melting point depression analysis, χ12 = ?1.0, confirms a thermodynamically miscible blend. Specific interactions have been analyzed by FTIR. The OH stretching region of PVPh indicates that upon addition of PPDO the hydroxyl–hydroxyl autoassociation interactions are mainly replaced by hydroxyl–carbonyl interassociation contacts, in detrimental of the possible hydroxyl–ether interactions. The carbonyl stretching region of pure PPDO is sensitive to intramolecular ether-ester interactions occurring in the oxyethanoate structures (–O–CH2–CO–O–) present along the PPDO chain. The –O–CH2–CO–O– structure presents only two minimum energy conformations, trans and cis, resulting in two different absorptions in the CO stretching region located respectively at about 1757 and 1732 cm?1. Blending with PVPh promotes two new contributions red shifted by about 23 cm?1 relative to the “free” CO components. Finally, POM analysis shows that the addition of PVPh to PPDO significantly decreases the crystallization rate of PPDO.  相似文献   

20.
The Raman spectra for Sr3(PO4)2 and Ba3(PO4)2 were investigated in the temperature range from 80 to 1623 K at atmospheric pressure. An unexpected melting of each sample was observed around 1573–1583 K in this study. In the temperature range from 80 to 1323 K, the Raman wavenumbers of all observed bands for Sr3(PO4)2 and Ba3(PO4)2 continuously decrease with increasing temperature. A quantitative analysis on the wavenumbers of Raman bands for both samples reveals that the ν3 antisymmetric stretching vibrations show the strongest temperature dependence and the ν2 symmetric bending vibration displays the weakest temperature dependence. The effects of cations on Raman bands are discussed. The reason for the unexpected melting of both samples is mainly attributed to the significant contribution from excess surface energy and the grain-boundary energy that has apparently lowered the melting points of the small samples, i.e., Gibbs–Thomson effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号