首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The numerical simulation of two-pulse echo signals at times 2τ, 4τ, and 6τ for the I=5/2 spin and at time 2τ, 4τ, and 8τ for the I=7/2 spin (τ is the time interval between exciting pulses) is carried out. It is shown that a delay by 2τ in the moment of formation of the echo results in the disappearance of extreme quadrupole satellites in the NMR spectrum obtained by recording the frequency dependence of the echo amplitude. The echoes at the maximum possible time of formation (2I+1)τ are only observed at the frequency of the purely magnetic spectroscopic transition $ \pm \frac{1}{2} \rightleftarrows \mp \frac{1}{2}$ ; no such echoes are observed at the quadrupole satellite frequencies. The computations are compared with the experimental results obtained for the 55Mn nuclei (spin I=5/2) in the perovskite GdCu3Mn4O12 and the spinel Li0.5Fe2.5O4: Mn.  相似文献   

2.
The24Mg(α, p γ) reaction has been studied atα-particle energies of 13, 15, and 15.2 MeV. Using method II of Litherland and Ferguson spin assignments or restrictions thereof could be made to the27Al levels atE x =5500 keV (I=11/2, 7/2), 6950 keV (I=11/2, 7/2), 7226 keV (I=9/2), 7286 keV (I=9/2–13/2), 7399 keV (I=11/2, 7/2) and 7443 keV (I=13/2, 9/2). Using the Doppler-shift attenuation method a lifetimeτ=20–50 fs was obtained for theE x =7399 keV level and a limitτ<20 fs for the levels atE x =7443, 7286, 7226, 6950, 6718, and 6287 keV, respectively. Further spin assignments in27Al were obtained by a study of the26Mg(p, γ) reaction at the Ep=2174 keV resonance. Fromγ-ray angular distributions the resonance spin was determined as I=9/2 (previous assignmentI=7/2) and the spin of theE x =5959 keV level was determined asI=7/2. Tentative spin assignments were made to the levels atE x =6537 keV (I=7/2) and 6718 keV (I=9/2). From the combined evidence of the24Mg(α, p) and26Mg(p, γ) reactions the spin of the 6287 keV level was found to beI=7/2. The results are compared with shell model calculations and the Nilsson model.  相似文献   

3.
In the last decade, magic angle spinning (MAS) NMR has become an extremely important method for studying the structure of inorganic solids. Advances in NMR technology have greatly aided in understanding the structure of catalysts, minerals, clays, ceramics, glasses, etc. Obtaining meaningful MAS spectra of spin-1/2 nuclei such as29Si and31P is relatively straightforward and well understood. In contrast, obtaining meaningful MAS spectra is far from simple with non-integral spin quadrupolar nuclei such as11B (I=3/2),17O (I=5/2),23Na (I=3/2),27Al (I=5/2),69Ga (I=3/2), and71Ga (I=3/2)?to name some of the most commonly studied nuclei. Many additional factors have to be considered. This paper will deal with these factors and the utility of very fast MAS for studying non-integral spin quadrupolar nuclei in inorganic solids.  相似文献   

4.
Using the reactor-produced lanthanum isotope 57 137 La, the hyperfine structure (hfs) of the transition La I, 5d 2 6p z 4 G 11 2/0 ?5d 2 6s a 4 F 9/2, λ=6250 Å and La I, 5d 2 6p z 2 H 11 2/0 ? 5d 2 6s a 2G9/2, λ=6266 Å were measured by means of a Fabry-Pérot interferometer. The nuclear spin I (137La)=7/2, already theoretically estimated by earlier authors, was confirmed. The nuclear magnetic dipole moment μI(137La)=+ 2.690 (6) n.m. and the electric quadrupole momentQ(137La)=+ 0.26 (8) · 10?24 cm2 were determined from the ratios of the hfs interaction constantsA andB of137La and the natural139La.  相似文献   

5.
Four novel coordination polymers: Ag(dpa) I, Co(O3PH)(4,4′-bpy)(H2O) II, Zn(O3PH)(4,4′-bpy)0.5 III and Mn[O2PH(C6H5)]2(4,4′-bpy) IV (dpa=2,2′-dipyridylamine; 4,4′-bpy=4,4′-bipyridine), were synthesized by microwave heating and characterized by X-ray crystallography. I crystallizes in monoclinic space group P21/n with a=11.576(2) Å, b=5.585(2) Å, c=15.243(4) Å, β=109.00(2)°, V=931.8(3) Å3. II crystallizes in monoclinic Cc space group with a=22.477(7) Å, b=5.280(1) Å, c=10.404(4) Å, β=96.08(3)°, V=1227.8(7) Å3. III crystallizes in monoclinic P21/c space group with a=9.758(2) Å, b=7.449(3) Å, c=10.277(2) Å, β=100.02(2)°, V=735.6(4) Å3. IV crystallizes in monoclinic space group P2/c with a=10.174(1) Å, b=11.817(3) Å, c=18.784(4) Å, β=102.14(1)°, V=2207.8(8) Å3. I consists of linear metal–metal chains wrapped by dpa ligands. II and III consist of two-dimensional MII(O3PH) inorganic sheets cross-linked by 4,4′-bpy ligands, while IV is formed by Mn[O2PH(C6H5)]2 sheets cross-linked by 4,4′-bpy ligands. I exhibits two-step thermal decomposition at ~200 and ~250°C, resulting in the reduction of Ag+ to Ag metal. II loses its coordination water at ~100°C, leaving vacant coordination sites at Co2+ ions, while the original framework remains intact. The removal of 4,4′-bpy in IIIV occurs at elevated temperatures above 250, 200 and 400°C respectively.  相似文献   

6.
The time differential perturbed angular distribution method (PAD) was used to measure theg-factor and the electric quadrupole interaction in a Cd single crystal for thet 1/2=140 ns,I π=7/2+ isomer in125Xe. Theg-factor isg=+0.264(10) and the quadrupole coupling constante 2 Qq/h=122.1 (6) MHz at 552 K. The lifetime of theI π=11/2+ state was measured to beτ=11.3 (1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-plus-particle (TRPP) model the quadrupole moment of the 7/2+ isomer is deduced to beQ=1.40 (15) b yielding an electric field gradient (efg)eq=3.6(4)·1017 V/cm2 for XeCd.  相似文献   

7.
Tritons from the reaction139La(d, t)138La atE d=16 MeV were analyzed at eleven reaction angles from 22 ° to 90 ° with a broad-range magnetic spectrograph. TheQ-value of the reaction is ?2522±5 keV. The nine lowest-lying states in138La are interpreted in terms of the shell model configurations (πg 7/2)?1 (vd 3/2)?1, (πg 7/2)?1 (vs 1/2)?1 and (πg 7/2)?2 (πd 5/2)?1(vd 3/2)?1. Seven levels in the energy range of 700–1300 keV are populated byl=5 transitions and are interpreted as coming from the (πg 7/2)?1(vh 11/2)?1 configuration. The ground state of138La is shown to haveJ π=5+. Therefore, beta decay by unique second-forbidden transitions to the 2+ one-phonon states of138Ce and138Ba must be inferred in spite of unusually high logft values of 19.2 and 18.5, respectively.  相似文献   

8.
Tanigaki  M.  Ohkubo  Y.  Taniguchi  A.  Kawase  Y.  Goto  J.  Sasanuma  T. 《Hyperfine Interactions》2001,136(3-8):391-396
A 140La(I π=3, T 1/2=40.3 h)-doped layer has been produced in CaB6 by means of radioactive isotope (RI) beam technique: 140Cs(I π=1, T 1/2=63.7 s) was implanted into CaB6 and the radioactive equilibrium of 140Ba–140La was achieved. The concentration of La in CaB6 was La/Ca ∼0.001. Obtained TDPAC spectra of the 2083 keV level of 140Ce (I π=4+, T 1/2=3.4 ns, μ=+4.35±0.10 μ N ) followed by the β decay of 140La showed the existence of hyperfine magnetic fields: B hyp=−15.0±0.5 T and −1.00±0.15 T. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
We report experimental results of nuclear magnetic resonance (NMR) at the La site and nuclear quadrupole resonance (NQR) at the As site in the normal state of the superconducting compound LaOs4As12. Measurements have been performed on powder sample obtained from high quality single crystals. The temperature dependences of the nuclear spin-lattice relaxation rates, 1/T1, of 75As and 139La nuclei were measured. No scaling between them was found indicating a local character of relaxation processes. The relaxation of 75As nuclei can consistently be understood in terms of antiferromagnetic spin fluctuations, as deduced from the T-dependence of (1/T1T)=C/(Tθ)1/2.  相似文献   

10.
The structure of the odd-odd nucleus142Pr has been studied at the Erlangen Tandem Van de Graaff accelerator by using the nuclear reactions139La(α, nγ) and142Ce(p, n γ). Neutron-gamma and gamma-gamma coincidence measurements have been performed. In the frame work of the shell model the low lying states up to energies of 400 keV can be described as two mixed multiplettsC 1i I ¦j′ p ,j n ;I>+C 2i I ¦j″ p ,'j n ; I> (i=1, 2;j′ p =2d5/2,j″ p =1g 7/2?1 andj n =2f 7/2). From a fit of experimentally determinedγ-branching ratios to theoretical transition probabilities we have derived the amplitudes of the wavefunctions. From these wavefunctions and the energies of states and configurations in142Pr we have obtained matrixelements of the effective residualp, n-interaction.  相似文献   

11.
Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2 n energy levels of the spin-system can be treated as an n-qubit system. It is demonstrated that QIP in such systems can be carried out using transition-selective pulses, in CH3CN, 13CH3CN, 7Li (I=3/2) and 133Cs (I=7/2), oriented in liquid crystals yielding 2 and 3 qubit systems. Creation of pseudopure states, implementation of logic gates and arithmetic operations (half-adder and subtractor) have been carried out in these systems using transition-selective pulses.  相似文献   

12.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

13.
Using a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quantum z-filtered pulse sequence and subsequently sheared along both the ν1 and ν2 dimensions. The application of this method is demonstrated for both crystalline (RbNO3) and amorphous samples (vitreous B2O3). The existence of the two rubidium isotopes (85Rb and 87Rb) allows comparison of results for two nuclei with different spins (I = 3/2 and 5/2), as well as different dipole and quadrupole moments in a single chemical compound. Being only limited by homogeneous line broadening and sample crystallinity, linewidths of approximately 0.1 and 0.2 ppm can be measured for 87Rb in the quadrupolar and chemical shift dimensions, enabling highly accurate determination of the isotropic chemical shift and the quadrupolar product, PQ. For vitreous B2O3, the use of MQDOR allows the chemical shift and electric field gradient distributions to be directly determined—information that is difficult to obtain otherwise due to the presence of second-order quadrupolar broadening.  相似文献   

14.
The low energy gamma-rays from neutron-capture in Lu 175 and Lu 176 have been investigated by means of the bent crystal-spectrometer at the DR-3-reactor at Risø. From the transitions in Lu 177 3 rotational bands have been determined. The levels of the (404)K=7/2+ groundstate rotational band are: 121,62 keV (I=9/2), 268,79keV (I=11/2), 440,66 keV (I=13/2), 636,22 keV (I=15/2), 854,34 keV (I=17/2). The level-sequence of the (514)K=9/2?-band is: 150,39 keV (I=9/2), 288,99 keV (I=11/2), 451,49 keV (I=13/2), 637,05 keV (I=15/2) and 844,88 keV (I=17/2). At 457,92 keV is the basis for the (402)K=5/2+-band the higher levels of which are 552,05 keV (I=7/2), 671,89 keV (I=9/2), 816,63 keV (I=11/2), 985,23 keV (I=13/2), 1176,73keV (I=15/2) and probably 1389,5 keV (I=17/2). The energies of the levels apart from the 1389 keV-level have an accuracy of 7×10?5. The energy differences between the 3 bands agree very well with the values expected from the Bohr-Mottelson-formulaE=A·I(I+1)+B·I 2(I+1)2. The calculated branching-ratios within the 3 bands are in fairly good agreement with the experimental values. Theg K -factors have been determined for 2 bands: It was found that for the (514)-bandg K =1,16±0,04 and for the (402)-bandg K =1,33±0,07.  相似文献   

15.
The β″-(BEDT-TTF)4AI[MIII(C2O4)3] · G(AI=NH 4 + , H3O+, K+, Rb+; MIII=Fe, Cr; G = “guest” solvent molecule) family of layered molecular conductors with magnetic metal oxalate anions exhibits a pronounced dependence of the conducting properties on the type of neutral solvent molecules introduced into the complex anion layer. A new organic dichlorobenzene (C6H4Cl2)-containing conductor of this family, namely, β″-(BEDT-TTF)4H3O[Fe(C2O4)3] · C6H4Cl2, is synthesized. The structure of the synthesized single crystals studied by X-ray diffraction is characterized by the following parameters: a = 10.421(1) Å, b= 19.991(2) Å, c= 35.441(3) Å, β = 92.87(1)°, V= 7374(1) Å3, space groupC2/c, and Z = 4. In the temperature range 0.5&;2-300 K, the conductivity of the crystals is metallic without changing into a superconducting state. The magnetotransport properties of the crystals are examined in magnetic fields up to 17 T at T = 0.5 K. In fields higher than 10 T, Shubnikov-de Haas oscillations are detected, and the Fourier spectrum of these oscillations contains two frequencies with maximum amplitudes of about 80 and 375 T. The experimental results are compared with the related data obtained for other phases of this family. The possible structural mechanisms of the effect of a guest solvent molecule on the transport properties of the β″-(BEDT-TTF)4AI[MIII(C2O4)3] · G crystals are analyzed.  相似文献   

16.
Using the atomic beam magnetic resonance method, the five hyperfine structure separations in the 4f 3 6s 2 4I9/2 ground state of 59 141 Pr have been measured. The results are:F F′ E FF′ * /h (MHz) 7 6 6477.913423(17) 6 5 5556.359848 (6) 5 4 4633.023306 (2) 4 3 3708.201146 (5) 3 2 2782.190601(15) From these quantities, the multipole interaction constantsA k,k=1, 2, 3, 4 between the nucleus and the electron shell have been calculated.A 4 especially then served to give the following limit for the intrinsic hexadecapole moment: ¦Q 40¦<0.4eb 2. Furthermore, theg J -factors of the4 I multiplet have been measured at magnetic fields of 300 Oe. The results are:g J(4 I 9/2)=0.7310371(15)g J(4 I 11/2)=0.9651476(20)g J(4 I 13/2)=1.1063197(40)g J(4 I 15/2)=1.197963 (30) Small corrections due to perturbations by neighbouring fine structure levels are included.  相似文献   

17.
Phosphate glasses with compositions (59.5–x)P2O5–MgO–xAgCl–0.5Er2O3 (0.0≤x≤1.5 mol%) containing fixed concentration of Er3+ ion with and without silver nanoparticles (NPs) are prepared using melt quenching technique. The amorphous nature of the glass is confirmed using the X-ray diffraction method. The homogeneous distribution of spherical Ag NPs (average size ~37 nm) in the glassy matrix is evidenced from the transmission electron microscopy (TEM) analyses. The UV–vis–NIR absorption spectra shows 10 bands corresponding to 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2, 4F5/2, 2G9/2, 4G11/2 transitions in which the most intense bands are 2H11/2 and 4G11/2. The absorption spectrum of Er3+ ions free glass sample containing Ag NPs displays a prominent surface Plasmon resonance (SPR) band located at 528 nm. The infrared to visible frequency upconversion (UC) emission under 797 nm excitation shows two emission bands green (4S3/24I15/2) and red (4F9/24I15/2) centered at 540 nm and 634 nm, respectively, corresponding to Er3+ transitions. An enhancement in UC emission intensity of green band (4S3/24I15/2) is observed in the presence of silver NPs and the maximum enhancement occurred for 1.5 mol% AgCl. However, the enhancement of emission intensity of the red band (4F9/24I15/2) is smaller. The enhancement of UC emission is understood in terms of the intensified local field effect due to silver NPs.  相似文献   

18.
Accurate experimental internal conversion data have been used to study the effect of nuclear penetration in the case of thel-forbidden transitions in139La (165.8 keV),141Pr (145.4 keV) and203Tl (279.2 keV). The nuclear penetration parameterλ and theE2/M 1 mixing ratioδ 2 have been deduced by graphical analysis. Following results were obtained:λ=2.8±1.3,δ 2 =(8.4 ?8.4 +14.0 )·10?4 for139La,λ=1.2±0.6,δ 2=(4.8±0.5)·10?3 for141Pr, andλ=6.4±1.1,δ 2=1.36±0.12 for203Tl.  相似文献   

19.
Theg-factor of the first excited state in the odd-odd nucleus138La (E x=73 keV,I π,T 1/2=116 ns) was measured by the time-differential perturbed angular distribution (TDPAD) method. The result, corrected for Knight shift and diamagnetic shielding, isg=+0.962±0.016. This value can be fairly well reproduced using the additivity relation for magnetic moments, empirical values for the odd-proton and odd-neutrong-factors, and an experimentally deduced wave function for the 3+ state.  相似文献   

20.
The optical absorption spectra of yttrium aluminum garnet (YAG) crystals doped with Nd3+ ions with different concentrations (0.6 at%, 1.0 at%, 1.2 at%) at the temperature range from 300 K to 500 K have been measured. The calculated Judd–Ofelt (JO) parameters Ωt (t=2, 4, 6) based on the spectra have been used to predict the radiative transition probabilities, branching ratios and radiative lifetimes of the transitions from 4F3/2 level to the lower levels (4I13/2, 4I11/2, 4I9/2) at each concentration and temperature. The three JO parameters Ωt (t=2, 4, 6), according to the calculation, decrease with the increasing doped concentration at each temperature. The JO parameters Ω2 and Ω4 increase, while the parameter Ω6 decreases with the increasing temperature at each concentration. The branching ratios and radiative transition probabilities of the transitions from the 4F3/2 level to 4I13/2 and 4I11/2 levels decrease, while the transition from the 4F3/2 level to 4I9/2 level increases with the increasing temperature. The obtained results at each concentration and temperature are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号