首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lithium doped cobalt ferrites (Li0.2CoFe1.8O4) were prepared by a sol–gel combustion method by using Lithium nitrate, cobalt nitrate, and ferric nitrate as source materials. Here, Citric acid and polyvinyl alcohol used as a burning agent and agglomeration reducing agent respectively. The pH value of precursor was maintained between 7 and 8 while preparation of the sample. The average particle size of the ferrite obtained at 300°C about ~15–20 nm. Further, single phase spinel structure has been confirmed by X-ray diffraction (XRD) and Cubic morphology was confirmed by High resolution scanning electron microscopy (HR-SEM). The composition of elements has been confirmed by Infrared spectroscopy (FT-IR). Moreover, the electrical studies of the prepared sample have been analyzed by four point probe method. The observed results inferred that conductivity of the ferrite sample has been reduced by addition of lithium.  相似文献   

2.
The material of the study was lead-free BaFe0.5Nb0.5O3 ceramics subject to modification. The base composition BaFe0.5Nb0.5O3 as well as the chromium, lithium and manganese modified ones were obtained using conventional mixed oxides and carbonates method. Synthesis was performed by the powder calcination method at high temperature 1250 °C for 4 h, while the densification was carried out by free sintering method under conditions 1350 °C/4 h. The paper presents a complex study of admixtures influence on the crystal structure, microstructure and dielectric properties of the BFN type samples. The mentioned dopants chromium, lithium or manganese in the BFN-type ceramics among other caused the reduction of the electric permittivity maximum as well as significant decrease in value of dielectric loss.  相似文献   

3.
The ternary oxides CrMnGaO4, NiMnGaO4, CuMnGaO4 and ZnMnGaO4, crystallize in the cubic spinel structure with lattice parametera=8.41±0.02 Å, 8.34±0.02 Å, 8.36±0.02 Å and 8.32±0.02 Å, respectively. The oxidation state of manganese in these spinels was determined x-ray spectroscopically. The site distribution was determined from the structural properties and calculated site preference energies of cations in the lattice. The ionic structures were found to be Ga3+ [Mn2+ Cr3+] O 4 2? . Ga3+ [Cu2+ Mn3+] O 4 2? , Mn2+ [Ga3+ Ni3+] O 4 2? and Zn2+ [Mn3+ Ga3+] O 4 2? .  相似文献   

4.
The electrochemical characteristics and structural changes associated with discharge and charge of several tungstic acids such as H2WO4 and H2WO4 · H2O have been investigated. The suitability of these substances as new cathode materials for nonaqueous lithium batteries has been assessed. H2WO4, having only coordinated water molecules, showed a discharge capacity of about 410 Ah kg–1 of acid weight and a discharge potential around 2 V vs. Li/Li+. This capacity was much higher than the 40 180 Ah kg–1 of anhydrous WO3. H2WO4 showed a good charge-discharge cycling behavior at a capacity below 1e /W. However, the formation of a stable phase such as Li2WO4 during the cyclings limited the cycling number. In addition, the crystal structure of H2WO4 changed from orthorhombic to tetragonal during discharge, but the original layered lattice was kept on discharge to 1.5e /W. On the other hand, a significant decrease in the layer spacing of H2WO4 · H2O took place with discharge, due to the direct interaction between the interlayer water molecule and the lithium inserted between the layers. In this paper, in particular, the effect of the coordinated and hydrated water molecules in the acid structure on the electrochemical behavior is discussed.  相似文献   

5.
A transition of the field dependence of the electrical resistivity from a square law (∼H 2) above T c to a linear function (∼H) below T c is observed in the degenerate ferromagnetic semiconductor HgCr2Se4(n). Together with the large negative magnetoresistance, these magnetoelectric effects correspond to effects observed in the perovskite-type oxides La1−x Ca x MnO δ . Inasmuch as the undoped semiconductor HgCr2Se4 is a ferromagnet with approximately the same critical temperature as the doped semiconductor and in view of the total lack of data on the Jahn-Teller effect in this compound, we infer that our results cast doubt on existing hypotheses (polaron and binary exchange) regarding the origin of the giant magnetoresistance in La1−x Ca x MnO δ . Impurity sd scattering is discussed as a possible magnetoresistance mechanism for both compounds. Fiz. Tverd. Tela (St. Petersburg) 41, 1800–1803 (October 1999)  相似文献   

6.
LiMn2O4 spinel is one of the most promising cathode materials for lithium-ion batteries because of its cheapness and eco-friendliness. Due to Jahn-Teller distortion, the capacity fades, however, upon repeated cycling. Attempts are being made to improve the cycle life of the spinel by substitution of manganese with other cations. In this paper we report the effect of partial substitution of manganese by Mg2+ ions in the LiMn2O4 phase. LiMgyMn2−yO4 (y=0 – 0.3) has been synthesized by a thermal method and characterized using XRD, TG/DTA and FTIR. The electrochemical performance is correlated with the dopant concentration.  相似文献   

7.
Lithium ionic conductivity of Li3N single crystals is reported for temperatures from 120 K to 350 K. The intrinsic ionic conductivity is rather small (< 10?6 Ω?1 cm?1 at 300 K) and shows no strong anisotropy. The activation energy is near 0,6 eV. It is shown that hydrogen is the critical impurity in the crystals grown and studied at this laboratory. The relative impurity concentration is determined from infrared transmission measurements near 3130 cm?1. An estimate for absolute values is obtained from dielectric studies. Increases in ionic conductivity with hydrogen doping by a factor 5000 are reported for E⊥c but no significant effects are found for E6c. The proposed defect is an impurity-vacancy complex consisting of an NH?? and a lithium vacancy.  相似文献   

8.
The chloride spinels Li2MCl4 with M = Mg, Mn, Fe and Cd show very high lithium ionic conductivity in the solid state. The ionic conductivity in the compounds under investigation was established with the help of emf measurements. The specific conductivities measured by both frequency response analysis and the four probe ac method are 1.3 Ω?1 · cm?1 for Li2CdCl4, and about 0.9Ω?1 · cm?1 for Li2MnCl4, Li2MgCl4, and Li2FeCl4 at 773 K. There are several indications that the ternary chlorides become highly disordered at elevated temperatures. Thus the Arrhenius plots, i.e. In σ · T vs 1/T-curves, exhibit significant bends, the slopes below the transition temperature being considerably higher than those above.  相似文献   

9.
Coexistence of two phases having space groups of Fd3m and P4332 in the Mg-doped LiMn2O4 spinel is being reported for the first time in this article. Mg-doped LiMn2O4 powders have been synthesized by sol-gel method using citric acid as a chelating agent. X-ray powder diffraction (XRD) studies show that the crystal structure of LiMgxMn2−xO4 for x<0.25 is a single-phase cubic spinel, which has space group of Fd3m. The cubic spinel structures having space group of Fd3m and P4332 are found to coexist in the compound for x=0.25. The structure becomes single-phase cubic spinel with space group P4332 for x>0.25. Field emission scanning electron microscopy (FESEM) shows that particle size of various synthesized powders ranges from 100 to 350 nm. Particle size decreases with increase in Mg content. Differential thermal analysis (DTA) and thermogravimetry (TG) studies show an exponential decay relationship between Mg-doping content and the decomposition temperature to form nonstoichiometry (LiMgxMn2−xO4−δ) in air atmosphere. Fourier transform infrared spectroscopy (FTIR) analysis shows increase in the number of vibrational bands with increase in Mg content, which indicates ordering of the ions in the case of ordered spinel structure, and consequent reduction of the space group symmetry from Oh7 to O7.  相似文献   

10.
The Korringa-Kohn-Rostoker method with Green’s function averaged over the atomic configurations in a complex Ising lattice and a muffin-tin potential was used to calculate the electronic-band structure in lithium containing vacancies and s, p, and d impurities. It is shown that substantial changes in the profile of the Fermi surface do not lead to necking, as was postulated previously, but cause splitting of the electronic states at the face of the Brillouin zone. This is attributed to the reduced symmetry of the crystal lattice with impurity excitation of the electronic-subsystem. Fiz. Tverd. Tela (St. Petersburg) 40, 1185–1186 (July 1998)  相似文献   

11.
Gallium antimonide crystals highly doped with Mn were prepared by a liquid-phase-electroepitaxy growth method. The crystals exhibited high hole concentrations up to 6×1018 cm−3. Photoluminescence (PL) and transmission techniques were used for their investigation. Spectral line-shapes typical for highly doped semiconductors were observed. The lines revealed the features corresponding to band gap narrowing and valence-band filling phenomena. Values of the band-gap narrowing ΔEg and the degree of the valence-band filling ΔEF were estimated from the PL spectra. The ionization energy of the Mn acceptor Ei was estimated to be approximately 15.1-15.6 meV. At low temperatures, the PL maxima shifted relatively strongly towards higher energy with temperature. The shifts most probably resulted from a dramatic change in the electron density of states near the bottom of the conduction band. The extent of low-energy tails of the PL bands correlates with the doping levels. The transmission spectra exhibited an absorption band centred at around 774-780 meV. The band most probably originated in electron transitions from the level of spin-orbit splitting to the top of the valence band.  相似文献   

12.
Spinel compounds with the general formulas ACr2X4 and ACr2−xBxX4 (where A=Cd, Zn, Hg, Ga, Cu; X=S, Se, Te, O; B=Ga, In, Sb), including also substitution of two different cations in the tetrahedral subarray, exhibit different correlations of the magnetic and electrical properties. These properties are correlated with the ionic radii of cations and anions. The solid solutions of the boundary compounds reveal, e.g. correlations of metallic conductivity and a semiconductor–metal phase transition. In some spinel solid solutions the latter phase transition is accompanied by the magnetic phase transitions, i.e. either AF-F or Fi-F. Magnetic and electrical properties and their correlations in different spinel series with chromium are discussed in the frames of the phase diagram of the spinel-type compounds with chromium. Different mechanisms leading to the spin-glass state are discussed and illustrated.  相似文献   

13.
Potassium lithium niobate doped with copper (Cu:KLN) were grown by the Czochralski method for the first time. The structure of Cu:KLN was measured by the x-ray powder diffraction method, and its lattice constants were obtained. The position of copper ions in KLN crystal was determined. The exponential gain coefficient, response time and erasure time were measured. It was found that the exponential gain coefficient of Cu:KLN is 10.5 cm−1, as two times high as that of KLN, and its response time of 1.53 s is one order of magnitude shorter than that of Cu:LiNbO3. The type of light exciting carriers in Cu:KLN has been investigated. The result showed that the electron acts the main role in Cu:KLN.  相似文献   

14.
《Solid State Ionics》2006,177(17-18):1501-1507
High-quality crystalline MSn2 (M = Cr and Co) thin films have been successfully fabricated by reactive pulsed laser deposition. The physical and electrochemical properties of the as-deposited thin films have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), galvanostatic cycling and cyclic voltammetry (CV). XRD measurement indicates that the as-deposited thin films prepared at 400 °C consisted mainly of MSn2 (M = Cr and Co) with a small quantity of metal tin. The specific reversible capacities of CrSn2 and CoSn2 thin film electrodes are found to be 467 mA h/g and 465 mA h/g, respectively. A mechanism involving an irreversible decomposition of MSn2 (M = Cr and Co) and a classical alloying process of Sn is proposed. MSn2 (M = Cr and Co) as the starting anode materials for conversion to the Li–Sn alloy can improve its electrochemical performance with high reversible capacity and good stable cycle.  相似文献   

15.
We present the results of the effect of Al substitution on the magnetic and electrical properties of Li0.2Zn0.6Fe2.2−xAlxO4 ferrites (0.0≤x≤0.5) prepared by the standard ceramic technique. The characterization has been performed using XRD, SEM, magnetic and dielectric response in frequency. XRD analysis confirms that the system exhibits polycrystalline single phase cubic spinel structure only for low dopant content. Doping decreases the dielectric loss tangent and the ferrite conductivity in more than two orders of magnitude in the whole analyzed frequency range. Attenuation has a maximum intensity (86 dB) near 90 MHz for x=0.4. The wider bandwidth at 20 dB (94.6 MHz) is for x=0.3.  相似文献   

16.
The optical absorption and luminescence spectra of single crystals of yttrium aluminum borate YAl3(BO3)4 doped with manganese ions are measured. It is established that the optical absorption spectra of yttrium aluminum borate single crystals doped with manganese ions are determined primarily by the contribution from the Mn4+ ions. The luminescence spectra of the YAl3(BO3)4 single crystals doped with manganese exhibit narrow lines attributed to the Mn4+ ions and an extended multiband structure which is associated primarily with the contribution from the Mn2+ ions.  相似文献   

17.
羊新胜  赵勇 《物理学报》2008,57(5):3188-3192
利用通常的电子陶瓷制备工艺制备了铁磁性锰氧化物La07Sr03MnO3掺杂的ZnO陶瓷. 晶界处存在La07Sr03MnO3(LSMO)和LaMnO3(LMO)两种杂相. 样品中绝缘相LMO的含量显著影响着样品的电学性能. 掺杂后的样品仍具有一定的铁磁性. 在样品上施加磁场后,样品电阻值增加,表现为正磁电阻性质. 正磁电阻的出现,是由于磁场的存在 关键词: ZnO 压敏电阻 锰氧化物 正磁电阻  相似文献   

18.
Pulsed laser damage of ferrites of MnZn spinels was studied. Some of the samples were treated by nuclear gamma radiation and α particles and then exposed to laser beams in different working conditions. The sample and damage quality was evaluated on the basis of X-ray, optical and SEM microscopy and micro-hardness experiments. The characteristic brittleness after nuclear gamma irradiation of ferrites and other materials was confirmed in the cases of interactions with laser beams. Characteristic cases of material cracks with CO2 laser were found.  相似文献   

19.
The (Ni:Cr) doped lithiated manganese oxide electrode is prepared by wet chemical route using citric acid as the precursor material. The various physical and chemical properties of the prepared electrode material were studied by DSC, XRD, FTIR, Raman and SEM measurements. The electrical conducting property of the electrode was studied by the d.c. conductivity measurements. The electrochemical property was also evaluated by using test cells with the (Ni:Cr) doped spinel electrode. The cycle life was found to be increased upon increasing dopant concentration. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号