首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of the title compounds was achieved via the ‘azirine/oxazolone method’ starting from the corresponding γ‐hydroxy acids. Upon subjecting the γ‐hydroxy‐N‐[1‐(dimethylcarbamoyl)ethyl]butanamides 4 to the so‐called ‘direct amide cyclization’ (DAC) conditions, chlorinated acids 11 or imino lactones 12 were obtained as the sole products instead of the expected cyclodepsipeptides A or their cyclodimers (Scheme 4). Variation of the substituents in 4 did not affect the outcome of the reaction and a mechanism for the formation of both products from the intermediate oxazolone 13 has been proposed. Under the acidic conditions of the DAC, the imino lactones are formed as their HCl salts 12 , which, in polar solvents or on silica gel, reacted further to give the chlorinated acids 11 . Stabilization of the imino lactones was achieved by increasing the substitution in the five‐membered ring, and their structure, in the form of the hydrochlorides, was established independently by X‐ray crystallography (Fig. 4). A derivative 15 of the imino lactone 12a was prepared by the reaction with the 2H‐azirin‐3‐amine 10a ; its structure was also established by an X‐ray crystal‐structure determination (Fig. 3). Furthermore, the structures of the ω‐chloro acids 11a and 11b were determined by X‐ray crystallography (Fig. 2).  相似文献   

2.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

3.
We hereby report the first preparation of the 5,6‐dihydro‐4H‐furo[2,3‐c]pyrrol‐4‐one ( 3 ) and its derivatives starting from methyl 3‐(methoxycarbonyl)furan‐2‐acetate ( 8 ). The ester functionality connected to the methylene group was regiospecifically converted to the desired monohydrazide 9 . Conversion of 9 into the acyl azide 10 followed by Curtius rearrangement gave the corresponding isocyanate derivative 11 (Scheme 2). Reaction of 11 with different nucleophiles produced urethane and urea derivatives (Scheme 3). Intramolecular cyclization reactions provided the target compounds (Scheme 5). Removal of the amine‐protecting group formed the title compound 3 .  相似文献   

4.
The hitherto unreported, highly functionalized 1H‐pyrazole‐3‐carboxylates 3 have been synthesized in good yields via a one‐pot three‐component domino reaction of phenylhydrazines, dialkyl acetylenedicarboxylates, and ninhydrin under mild conditions for the first time. No co‐catalyst or activator is required for this multicomponent reaction, and the reaction is, from an experimental point of view, simple to perform (Scheme 1). The structures of compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization/addition reaction is proposed (Scheme 2).  相似文献   

5.
The treatment of diluted solutions of the hydroxy diamides 6a and 6b in toluene with HCl gas at 100° gave the dimeric, 14‐membered cyclodepsipeptide 10 in up to 72% yield (Scheme 3). The same product was formed from the linear dimer of 6b , the depsipeptide 11 , under the same conditions (cf. Scheme 4). All attempts to prepare the cyclic seven‐membered monomer 9 , starting with different precursors and using different lactonization methods failed, and 10 was the only product which was isolated (cf. Scheme 6). For example, the reaction of the ester 20 with NaH in toluene at 80° led exclusively to the cyclodimer 10 . On the other hand, the base‐catalyzed cyclization of the hydroxy diester 22 , which is the ‘O‐analogue' of 20 , yielded neither the seven‐membered dilactone, nor the 14‐membered tetralactone, but only the known trimer 23 and tetramer 24 of 2,2‐dimethylpropano‐3‐lactone (cf. Scheme 7).  相似文献   

6.
The 4‐exo cyclizations of two types of carbamoyl radicals onto O‐alkyloxime acceptor groups were studied as potential routes to 3‐amino‐substituted azetidinones and hence to penicillins. A general synthetic route to ‘benzaldehyde oxime oxalate amides’ (= 2‐[(benzylideneamino)oxy]‐2‐oxoacetamides; see, e.g., 10c ) of 2‐{[(benzyloxy)imino]methyl}‐substituted thiazolidine‐4‐carboxylic acid methyl esters 9 was developed (Scheme 3). It was shown by EPR spectroscopy that these compounds underwent sensitized photodissociation to the corresponding carbamoyl radicals but that these did not ring close. An analogous open‐chain precursor, benzaldehyde O‐(benzylaminoacetaldehyde‐O‐benzyloxalyl)oxime, 15 , lacking the 5‐membered thiazolidine ring, was shown by EPR spectroscopy to release the corresponding carbamoyl radical (Scheme 4). The latter underwent 4‐exo cyclization onto its C?NOBn bond in non‐H‐atom donor solvents. The rate constant for this cyclization was determined by the steady‐state EPR method. Spectroscopic evidence indicated that the reverse ring‐opening process was slower than cyclization.  相似文献   

7.
A new total synthesis of the natural carbazole murrayanine ( 1 ) was developed by using the 4,5‐dimethyleneoxazolidin‐2‐one 12 as starting material. The latter underwent a highly regioselective Diels–Alder cycloaddition with acrylaldehyde (=prop‐2‐enal; 13 ) to give adduct 14 (Scheme 3). Conversion of this adduct into diarylamine derivative 9 was carried out via hydrolysis and methylation (Scheme 4). Differing from our previous synthesis, in which such a diarylamine derivative was transformed into 1 by a PdII‐stoichiometric cyclization, this new approach comprised an improved cyclization through a more efficient Pd0‐catalyzed intramolecular diaryl coupling which was applied to 9 , thus obtaining the natural carbazole 1 in a higher overall yield.  相似文献   

8.
Vilsmeier–Haack‐type cyclization of 1H‐indole‐4‐propanoic acid derivatives was examined as model construction for the A–B–C ring system of lysergic acid ( 1 ). Smooth cyclization from the 4 position of 1H‐indole to the 3 position was achieved by Vilsmeier–Haack reaction in the presence of K2CO3 in MeCN, and the best substrate was found to be the N,N‐dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α‐amino acid derivative protected with an N‐acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)‐ 27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S‐containing tricyclic system 22 , which was formed by a cyclization to the 5 position (Scheme 3).  相似文献   

9.
A new series of 2,3‐disubstituted quinazolin‐4(3H)‐one derivatives was synthesized by nucleophilic attack at C(2) of the corresponding key starting material 2‐propyl‐4H‐3,1‐benzoxazin‐4‐one (Scheme 2). The reaction proceeded via amidinium salt formation (Scheme 3) rather than via an N‐acylanthranilimide. The structure of the prepared compounds were elucidated by physical and spectral data like FT‐IR, 1H‐NMR, and mass spectroscopy.  相似文献   

10.
The reaction of aryl isoselenocyanates 8 with methyl 3‐amino‐4‐chloro‐1‐ethylpyrrolo[3,2‐c]quinoline‐2‐carboxylate ( 6 ) in boiling pyridine leads to tetracyclic selenaheterocycles of type 9 in high yield (Scheme 3). A reaction mechanism via an intermediate selenoureido derivative A and cyclization via nucleophilic substitution of Cl by Se is proposed (Schemes 3 and 5). The reaction of 6 with 4‐bromophenyl isothiocyanate yields the analogous thiaheterocycle 12 (Scheme 4). The molecular structures of 9c and 12 have been established by X‐ray crystallography.  相似文献   

11.
2‐Aryl‐2,3‐dihydro‐4H‐pyran‐4‐ones were prepared in one step by cyclocondensation of 1,3‐diketone dianions with aldehydes. The use of HCl (10%) for the aqueous workup proved to be very important to avoid elimination reactions of the 5‐aryl‐5‐hydroxy 1,3‐diones formed as intermediates. The TiCl4‐mediated cyclization of a 2‐aryl‐2,3‐dihydro‐4H‐pyran‐4‐one with 1,3‐silyloxybuta‐1,3‐diene resulted in cleavage of the pyranone moiety and formation of a highly functionalized benzene derivative.  相似文献   

12.
Irradiation (350 nm) of 2‐alkynylcyclohex‐2‐enones 1 in benzene in the presence of an excess of 2‐methylbut‐1‐en‐3‐yne ( 2 ) affords in each case a mixture of a cis‐fused 3,4,4a,5,6,8a‐hexahydronaphthalen‐1(2H)‐one 3 and a bicyclo[4.2.0]octan‐2‐one 4 (Scheme 2), the former being formed as main product via 1,6‐cyclization of the common biradical intermediate. The (parent) cyclohex‐2‐enone and other alkylcyclohex‐2‐enones 7 also give naphthalenones 8 , albeit in lower yields, the major products being bicyclo[4.2.0]octan‐2‐ones (Scheme 4). No product derived from such a 1,6‐cyclization is observed in the irradiation of 3‐alkynylcyclohex‐2‐enone 9 in the presence of 2 (Scheme 4). Irradiation of the 2‐cyano‐substituted cyclohexenone 12 under these conditions again affords only traces of naphthalenone 13 , the main product now being the substituted bicyclo[4.2.0]oct‐7‐ene 16 (Scheme 5), resulting from [2+2] cycloaddition of the acetylenic C−C bond of 2 to excited 12 .  相似文献   

13.
The reactive 1 : 1 adducts in the reaction between Ph3P and dialkyl acetylenedicarboxylates have been trapped with ‘tosylmethyl isocyanide’ (TsMIC ; 1 ) to yield dialkyl 2‐[(4‐methylphenyl)sulfonyl]‐1H‐pyrrole‐3,4‐dicarboxylates 3 (Scheme 1). The structures of the highly functionalized compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 2).  相似文献   

14.
The 3‐allyl‐2‐methylquinazolin‐4(3H)‐one ( 1 ), a model functionalized terminal olefin, was submitted to hydroformylation and reductive amination under optimized reaction conditions. The catalytic carbonylation of 1 in the presence of Rh catalysts complexed with phosphorus ligands under different reaction conditions afforded a mixture of 2‐methyl‐4‐oxoquinazoline‐3(4H)‐butanal ( 2 ) and α,2‐dimethyl‐4‐oxoquinazoline‐3(4H)‐propanal ( 3 ) as products of ‘linear’ and ‘branched’ hydroformylation, respectively (Scheme 2). The hydroaminomethylation of quinazolinone 1 with arylhydrazine derivatives gave the expected mixture of [(arylhydrazinyl)alkyl]quinazolinones 5 and 6 , besides a small amount of 2 and 3 (Scheme 3). The tandem hydroformylation/reductive amination reaction of 1 with different amines gave the quinazolinone derivatives 7 – 10 . Compound 10 was used to prepare the chalcones 11a and 11b and pyrazoloquinazolinones 12a and 12b (Scheme 4).  相似文献   

15.
An effective route to novel 4‐(alkylamino)‐1‐(arylsulfonyl)‐3‐benzoyl‐1,5‐dihydro‐5‐hydroxy‐5‐phenyl‐2H‐pyrrol‐2‐ones 10 is described (Scheme 2). This involves the reaction of an enamine, derived from the addition of a primary amine 5 to 1,4‐diphenylbut‐2‐yne‐1,4‐dione, with an arenesulfonyl isocyanate 7 . Some of these pyrrolones 10 exhibit a dynamic NMR behavior in solution because of restricted rotation around the C? N bond resulting from conjugation of the side‐chain N‐atom with the adjacent α,β‐unsaturated ketone group, and two rotamers are in equilibrium with each other in solution ( 10 ? 11 ; Scheme 3). The structures of the highly functionalized compounds 10 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS), by elemental analyses, and, in the case of 10a , by X‐ray crystallography. A plausible mechanism for the reaction is proposed (Scheme 4).  相似文献   

16.
The [3,3′(4H,4′H)‐bi‐2H‐1,3‐oxazine]‐4,4′‐diones 3a – 3i were obtained by [2+4] cycloaddition reactions of furan‐2,3‐diones 1a – 1c with aromatic aldazines 2a – 2d (Scheme 1). So, new derivatives of bi‐2H‐1,3‐oxazines and their hydrolysis products, 3,5‐diaryl‐1H‐pyrazoles 4a – 4c (Scheme 3), which are potential biologically active compounds, were synthesized for the first time.  相似文献   

17.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

18.
A series of aryl‐substituted 1,3‐dithiol‐2‐ones was prepared by the Bhattacharya? Hortmann cyclization method. Unexpectedly, a Ritter reaction occurred during the acid‐catalyzed cyclization at the cyano group of the aryl substituents and 1,3‐dithiol‐2‐ones bearing a carboxy or a carboxamide group could be selectively obtained (see 1 and 2a in Scheme 1). The formation of the acid or the amide functionality was temperature‐dependent so that the one or the other group could be introduced selectively by modifying the reaction temperature.  相似文献   

19.
The photochemical reactions of 2‐substituted N‐(2‐halogenoalkanoyl) derivatives 1 of anilines and 5 of cyclic amines are described. Under irradiation, 2‐bromo‐2‐methylpropananilides 1a – e undergo exclusively dehydrobromination to give N‐aryl‐2‐methylprop‐2‐enamides (=methacrylanilides) 3a – e (Scheme 1 and Table 1). On irradiation of N‐alkyl‐ and N‐phenyl‐substituted 2‐bromo‐2‐methylpropananilides 1f – m , cyclization products, i.e. 1,3‐dihydro‐2H‐indol‐2‐ones (=oxindoles) 2f – m and 3,4‐dihydroquinolin‐2(1H)‐ones (=dihydrocarbostyrils) 4f – m , are obtained, besides 3f – m . On the other hand, irradiation of N‐methyl‐substituted 2‐chloro‐2‐phenylacetanilides 1o – q and 2‐chloroacetanilide 1r gives oxindoles 2o – r as the sole product, but in low yields (Scheme 3 and Table 2). The photocyclization of the corresponding N‐phenyl derivatives 1s – v to oxindoles 2s – v proceeds smoothly. A plausible mechanism for the formation of the photoproducts is proposed (Scheme 4). Irradiation of N‐(2‐halogenoalkanoyl) derivatives of cyclic amines 5a – c yields the cyclization products, i.e. five‐membered lactams 6a , b , and/or dehydrohalogenation products 7a , c and their cyclization products 8a , c , depending on the ring size of the amines (Scheme 5 and Table 3).  相似文献   

20.
Irradiation (350 nm) of the newly synthesized 3‐(alk‐1‐ynyl)cyclohept‐2‐en‐1‐ones 1 and 2 leads to the selective formation of tricyclic head‐to‐head dimers. In the presence of 2,3‐dimethylbuta‐1,3‐diene, the (monocyclic) enone 1 affords trans‐fused 7‐alkynyl‐bicyclo[5.2.0]nonan‐2‐ones as major photoproducts, whereas photocycloaddition of benzocyclohept‐5‐en‐7‐one 2 to the same diene gives preferentially the eight‐membered cyclic allene 16 via ‘end‐to‐end’ cyclization of the intermediate allyl‐propargyl biradical 22 . On contact with acid, cycloocta‐1,2,5‐triene 16 isomerizes to cycloocta‐1,3,5‐triene 18 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号