首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous detection of various o‐phthalaldehyde (OPA)‐labeled amino acids (AAs) in food samples was reported based on CE separation. Ionic liquid was used for the first time for CE analysis of AAs with in‐capillary derivatization. Several other additives, including SDS, α/β‐CD, and ACN, as well as key parameters for CE separation (buffer pH value, separation voltage), were also investigated. Our results show that the multiple additive strategy exhibits good stable and repeatable character for CE analysis of OPA‐labeled AAs, for either in‐capillary derivatization or CE separation, and allows simultaneous quantification of different OPA‐labeled AAs in a large concentration range of 50 μM to 3.0 mM with LOD down to 10 μM. Seventeen OPA‐labeled AAs, except for two pairs of AAs (His/Gln and Phe/Leu), which were separated with resolutions of 1.1 and 1.2, respectively, were baseline separated and identified within 23 min using the present multiple additive strategy. The method was successfully applied for simultaneous analysis of AAs in seven beer samples and as many as eleven trace‐amount AAs were detected and quantified, indicating the valuable potential application of the present method for food analysis.  相似文献   

2.
Kok MG  de Jong GJ  Somsen GW 《Electrophoresis》2011,32(21):3016-3024
Analyte responses in CE‐ESI‐MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure‐induced infusion and CE‐MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water–methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R2>0.99). This BGE yielded lower limits of detection (0.7–9.1 μM) for most test compounds when compared with common CE‐MS methods using a BGE and SL containing ammonium acetate (NH4Ac) (25 and 5 mM, respectively). CE‐MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH4Ac‐containing BGE and SL, employing a bare fused‐silica (BFS) and Polybrene‐dextran sulfate‐Polybrene (PB‐DS‐PB)‐coated capillary, respectively. With the CE‐MS method using TEA, about 170 molecular features were observed that were not detected with the NH4Ac‐based CE‐MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH4Ac‐containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE‐MS.  相似文献   

3.
Optimization based on central composite design (CCD) for enantioseparation of anisodamine (AN), atenolol (AT), and metoprolol (ME) in human urine was developed using a microfluidic chip‐CE device. Coupling the flexible and wide working range of microfluidic chip‐CE device to CCD for chiral separation of AN, AT, and ME in human urine, a total of 15 experiments is needed for the optimization procedure as compared to 75 experiments using the normal one variable at a time optimization. The optimum conditions obtained are found to be more robust as shown by the curvature effects of the interaction factors. The developed microfluidic chip‐CE‐ECL system with adjustable dilution ratios has been validated by satisfactory recoveries (89.5–99% for six enanotiomers) in urine sample analysis. The working range (0.3–600 μM), repeatability (3.1–4.9% RSD for peak height and 4.0–5.2% RSD for peak area), and detection limit (0.3–0.6 μM) of the method developed are found to meet the requirements for bedside monitoring of AN, AT, and ME in patients under critical conditions. In summary, the hyphenation of CCD with the microfluidic chip‐CE device is shown to offer a rapid means for optimizing the working conditions on simultaneous separation of three racemic drugs using the microfluidic chip‐CE device developed.  相似文献   

4.
CE with capacitively coupled contactless conductivity detection (C(4)D) was used to determine waste products of the nitrogen metabolism (ammonia and creatinine) and of biogenic inorganic cations in samples of human urine. The CE separation was performed in two BGEs, consisting of 2 M acetic acid + 1.5 mM crown ether 18-crown-6 (BGE I) and 2 M acetic acid + 2% w/v PEG (BGE II). Only BGE II permitted complete separation of all the analytes in a model sample and in real urine samples. The LOD values for the optimized procedure ranged from 0.8 microM for Ca(2+) and Mg(2+) to 2.9 microM for NH(4)(+) (in terms of mass concentration units, from 7 microg/L for Li(+) to 102 microg/L for creatinine). These values are adequate for determination of NH(4)(+), creatinine, Na(+), K(+), Ca(2+) and Mg(2+) in real urine samples.  相似文献   

5.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

6.
Capillary electrophoresis coupled to LED-induced fluorescence detection is a robust and sensitive technique used for amino acids (AA) analysis in biological media, after labeling with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA). We wanted to quantitate in plasma tryptophan (Trp), tyrosine (Tyr), valine (Val), and isoleucine (Ile). Among the different labeled AA-CBQCA, Trp has the lowest fluorescence yield, which makes its detection and quantification very difficult in biological samples such as plasma. We tried to improve Trp analysis by CE/LED-induced fluorescence detection to its maximal sensitivity by using large volume sample stacking as a preconcentration step in our analytical protocol. At pH 9.5, this step caused a drop in resolution during the separation of the four AAs and it was therefore necessary to work at pH 10. We have found that Tyr, Val, Ile, and Trp are detected and well separated from the other AAs, but Trp cannot be quantified in plasma samples, mainly because of the low fluorescence yield of the Trp-CBQCA derivative. The recorded LOD is 0.18 μM for Trp-CBQCA in standard solution with a resolution between Trp and Tyr of 1.2, while the LOD is 6 μM in plasma with the same resolution. Trp, Tyr, Val, and Ile are, however, efficiently quantified when using a 3 M acetic acid electrolyte and CE associated with capacitively coupled contactless conductivity detection, which also has the advantage of not requiring derivatization or large volume sample stacking. This article demonstrates, for the CE user, that quantitative analysis of these four AA in mouse plasma can be performed by CE-fluorescence after CBQCA labeling, with the exception of Trp. It can be advantageously replaced by CE/capacitively coupled contactless conductivity detection, the only efficient one for Trp, Tyr, Val, and Ile quantification. In this case, the LOD for Trp is 2 μM. The four AAs are separated with resolution with neighbors above 1.5.  相似文献   

7.
This study reports a reinvestigation of background electrolyte selection strategy for performance improvement in CE‐LIF of peptides and proteins. This strategy is based on the employment of high concentrations of organic species in BGE possessing high buffer capacity and low specific conductivity in order to ensure excellent stacking preconcentration and separation resolution of fluorescently tagged peptides and proteins. Unlike universal UV detection, the use of such BGEs at high concentrations does not lead to degradation of LIF detection signals at the working excitation and emission wavelengths. At the same buffer ionic strength, pH and electric field, an “inorganic‐species‐free” BGE (or ISF BGE) for CE‐LIF of fluorescently labeled beta amyloid peptide Aβ 1–42 (a model analyte) offered a signal intensity and peak efficiency at least three‐times higher than those obtained with a conventional BGE normally used for CE‐LIF, while producing an electric current twice lower. Good peak performance (in terms of height and shape) was maintained when using ISF BGEs even with samples prepared in high‐conductivity phosphate buffer saline matrix. The advantageous features of such BGEs used at high concentrations over conventional ones in terms of high separation resolution, improved signal intensities, tuning of EOF magnitudes and minimization of protein adsorption on an uncoated fused silica capillary are demonstrated using Alexa‐488‐labelled trypsin inhibitor. Such BGE selection approach was applied for investigation of separation performance for CE‐LIF of ovalbumin labelled with different fluorophores.  相似文献   

8.
Paliperidone is a new antipsychotic drug with a relatively low therapeutic concentration of 20–60 ng/mL. We established an accurate and sensitive CE method for the determination of paliperidone concentrations in human plasma in this study. To minimize matrix effect caused by quantification errors, paliperidone was extracted from human plasma using Oasis HLB SPE cartridges with three‐step washing procedure. To achieve sensitive quantification of paliperidone in human plasma, a high‐conductivity sample solution with sweeping‐MEKC method was applied for analysis. The separation is performed in a BGE composed of 75 mM phosphoric acid, 100 mM SDS, 12% acetonitrile, and 15% tetrahydrofuran. Sample solution consisted of 10% methanol in 250 mM phosphoric acid and the conductivity ratio between sample matrix and BGE was 2.0 (γ, sample/BGE). The results showed it able to detect paliperidone in plasma samples at concentration as low as 10 ng/mL (S/N = 3) with a linear range between 20 and 200 ng/mL. Compared to the conventional MEKC method, the sensitivity enhancement factor of the developed sweeping‐MEKC method was 100. Intra‐ and interday precision of peak area ratios were less than 6.03%; the method accuracy was between 93.4 and 97.9%. This method was successfully applied to the analysis of plasma samples of patients undergoing paliperidone treatment.  相似文献   

9.
Fast capillary electrophoresis (CE) hyphenated to time-of-flight mass spectrometry (TOF-MS) of four organoarsenic species (glycerol oxoarsenosugar, sulfate oxoarsenosugar, arsenobetaine, arsenocholine) are presented using short length CE capillaries under high electric field strengths of up to 1.3 kV cm(-1) with small inner diameter (ID). The separation of arsenosugars by CE is demonstrated for the first time. An aqueous formic acid solution was employed as the background electrolyte (BGE) for the separation. Various acid concentrations were evaluated for their influence on migration times, separation efficiency as well as with regard to controlling the charge of the arsenic species. A 0.1 M formic acid/ammonium formate buffer (pH 2.8) proved to be suitable for the separation of the four species. A non-aqueous BGE was tested as an alternative buffer system for fast speciation analysis. Separation of arsenobetaine and arsenocholine could even be achieved within 10 s by pressure-assisted CE. Application of the optimized method for the analysis of extracts of a seagrass and a Wakame algae sample as well as the brown algae homogenate reference material IAEA-140/TM revealed a clear signal for the glycerol arsenosugar.  相似文献   

10.
A new kind of flow gating interface (FGI) has been designed for online connection of CE with flow‐through analytical techniques. The sample is injected into the separation capillary from a space from which the BGE was forced out by compressed air. A drop of sample solution with a volume of 75 nL is formed between the outlet of the delivery capillary supplying the solution from the flow‐through apparatus and the entrance to the CE capillary; the sample is hydrodynamically injected into the CE capillary from this drop. The sample is not mixed with the surrounding BGE solution during injection. The functioning of the proposed FGI is fully automated and the individual steps of the injection process are controlled by a computer. The injection sequence lasts several seconds and thus permits performance of rapid sequential analyses of the collected sample. FGI was tested for the separation of equimolar 50 μM mixture of the inorganic cations K+, Ba2+, Na+, Mg2+, and Li+ in 50 mM acetic acid/20 mM Tris (pH 4.5) as BGE. The obtained RSD values for the migration times varied in the range 0.7–1.0% and the values for the peak area were 0.7–1.4%; RSD were determined for ten repeated measurements.  相似文献   

11.
In this study, the extraction and CE-ESI-TOF-MS analysis of tricyclic antidepressant (TCA) drugs imipramine, desipramine, clomipramine and norclomipramine in human plasma has been optimized. The CE capillaries were modified with ω-iodo-alkyl ammonium salt (M7C4I coating) to reduce analyte adsorption to the silica wall. The use of a strong cation exchange (SCX) solid-phase extraction (SPE) column specifically designed for the extraction of basic drug species from biofluids gave very clean extracts with high and reproducible recoveries. The extraction recoveries were ranging between 87 and 91% with % RSD values of 0.5-1.7% (n=3). The obtained strong cation exchange-SPE extracts of the TCA in human plasma only contained the analytes of interest. The optimized CE separation conditions were obtained by adding ACN and acetic acid to the sample while using an aqueous BGE. The CE-ESI-TOF-MS analysis was performed within 6 min for all TCA analytes under the optimized condition with peak efficiencies up to 1.4 x 10? plates/m and an average % RSD of the migration times of the analytes of 0.3% (n=5). The presented method can readily be used for the extraction and quantification of basic drug species in human biological fluids and in pharmaceutical formulations.  相似文献   

12.
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 μm id×46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35°C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 μg/mL. The LOQ was 0.125 μg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.  相似文献   

13.
We have employed a novel capillary electrophoresis (CE) approach recently developed in our laboratory, termed ion-interaction-capillary zone electrophoresis (II-CZE), to the resolution of a mixture of 27 synthetic cationic proteomic peptide standards. These peptides were comprised of three groups of nine peptides (with net charges of +1, +2 and +3 for all nine peptides within a group), the hydrophobicity of the nine peptides within a group varying only subtly between adjacent peptides. This bidimensional CE approach achieved excellent resolution of the peptides with high peak capacity by combining the powerful CZE mechanism located in the background electrolyte (BGE) with an hydrophobicity-based mechanism also located in the BGE, the latter consisting of high concentrations (up to 0.4M) of aqueous perfluorinated acids (trifluoroacetic acid, pentafluoropropionic acid and heptafluorobutyric acid). Thus, concomitant with a CZE separation of the three differently charged groups of peptides, there is an hydrophobically-mediated separation of the peptides within these groups effected through interaction of the hydrophobic anions of the perfluorinated acids with hydrophobic amino acid side-chains in the peptides. This methodology is dramatically different from other CE methods that have used complexing agents such as micelles or cyclodextrins in MEKC. Overall, the results presented here demonstrate the value of CE as a peptide separative tool in its own right, including its use for proteomic applications, and not merely as a complementary technique to reversed-phase high-performance liquid chromatography (RP-HPLC).  相似文献   

14.
The use of transient moving chemical reaction boundary (tMCRB) was investigated for the on‐line preconcentration of native amino acids in heart‐cutting 2D‐CE with multiple detection points using contactless conductivity detection. The tMCRB focusing was obtained by using ammonium formate (pH 8.56) as sample matrix and acetic acid (pH 2.3) as a BGE in the first dimension of the heart‐cutting 2D‐CE. Different experimental parameters such as the injected volume and the concentration in ammonium formate were optimized for improving the sensitivity of detection. A stacked fraction from the first dimension was selected, isolated in the capillary, and then separated in the second dimension in the presence of a chiral selector ((+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid). This on‐line tMCRB preconcentration coupled with heart‐cutting 2D‐CE was applied with success to the chiral separation of D ,L ‐phenylalanine, and D ,L ‐threonine in a mixture of 22 native amino acids. The sample mixture was diluted in 0.8 M of ammonium formate, and injected at a concentration of 2.5 μM for each enantiomer with a volume corresponding to 10% of the total capillary volume. An LOD (S/N=3) of 2 μM was determined for L ‐threonine.  相似文献   

15.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

16.
Micro-electrodialysis (μED) and CE were combined for rapid pretreatment and subsequent determination of inorganic cations in biological samples. Combination of μED with CE greatly improved the analytical performance of the latter as the adsorption of high molecular weight compounds present in real samples on the inner capillary wall was eliminated. Fifty microliter of 80-fold diluted human body fluids such as plasma, serum and whole blood was used in the donor compartment of the μED system requiring less than 1?μL of the original body fluid per analysis. Inorganic cations that migrated through a cellulose acetate dialysis membrane with molecular weight cut-off value of 500?Da were collected in the acceptor solution and were then analyzed using CE-C?D. Baseline separation of inorganic cations was achieved in a BGE solution consisting of 12.5?mM maleic acid, 15?mM L-arginine and 3?mM 18-crown-6 at pH 5.5. Repeatability of the CE-C?D method was better than 0.5% and 2.5% for migration times and peak areas, respectively; limits of detection of all inorganic cations in the presence of 2?mM excess of Na(+) were around 1?μM and calibration curves were linear with correlation coefficients better than 0.998. Repeatability of the sample pretreatment procedure was calculated for six independent electrodialysis runs of artificial and real samples and was better than 11.8%. Recovery values between 96.3 and 110% were achieved for optimized electrodialysis conditions of standard solutions and real samples; lifetime of the dialysis membranes for pretreatment of real samples was estimated to 100 runs.  相似文献   

17.
A method has been developed for the quantitation of the antiepileptic drug vigabatrin (VGB) in human plasma. It is based on CE with LIF detection. The effect of the pH of the buffer and of N-methylglucamine (GLC) as BGE constituent was investigated. The final BGE consisted of 50 mM borate buffer, pH 9.0, with 100 mM GLC and enabled separation within 12 min at 20 kV voltage. An SPE procedure was used for the pretreatment of biological samples, based on mixed-mode lipophilic-cation exchange cartridges, followed by a derivatization step with 6-carboxyfluorescein-N-succinimidyl ester (CFSE). Fluorescence was excited by an Ar-ion laser (lambda(exc) = 488 nm). Linearity was observed in the 10-120 microg/mL plasma concentration range. Extraction yield was >96%, precision (expressed as RSD) <6.7% and accuracy (recovery) was between 97.0 and 101.6%. The method has been successfully applied to the analysis of VGB in plasma of epileptic patients undergoing therapy with the drug.  相似文献   

18.
Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts.  相似文献   

19.
A method for the determination of tartaric acid enantiomers using CE with contactless conductivity detection has been developed. Cu(II) as a central metal ion together with l ‐hydroxyproline were used as a chiral selector, the BGE was composed of 7 mM CuCl2, 14 mM trans‐4‐hydroxy‐l ‐proline, and 100 mM ε‐aminocaproic acid; the pH was adjusted to 5 by hydrochloric acid. Separation with a resolution of 1.9 was achieved in 9 min in a polyacrylamide‐coated capillary to suppress the EOF. Various counterions of the BGE were studied, and migration order reversal was achieved when switching from ε‐aminocaproic acid to l ‐histidine. With detection limits of about 20 μM, the method was applied to the analysis of wine and grape samples; only l ‐tartaric acid was found.  相似文献   

20.
A method has been developed for the analysis of the antidepressant drug sertraline together with its main metabolite N-desmethylsertraline (DMS) in human plasma. It is based on CE with LIF detection (lambda = 488 nm). A SPE procedure is employed for biological sample pretreatment, followed by a derivatization step with FITC; reboxetine was the internal standard. The effect of CD, acetone and N-methyl-D-glucamine (GLC) as constituents of the BGE for analyte separation was investigated. The final BGE consisted of 20 mM carbonate buffer, pH 9.0, with 2.5 mM heptakis(2,6-di-O-methyl)-beta-CD, 50 mM GLC and 20% v/v acetone. With 30 kV applied voltage, the electrophoretic run is completed in 7.5 min. Linearity was observed in the plasma concentration range from 3.0 to 500 ng/mL for sertraline and 4.0 to 500 ng/mL for DMS. Extraction yield was >97.1%, precision - expressed as RSD% - was <3.7, accuracy (recovery) was >95.6%. Due to its sensitivity and selectivity, the method was suited for the analysis of plasma samples from patients undergoing therapy with sertraline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号